alexa BDNF and Synaptic Plasticity: The Recent Cell Biology for Understanding of Brain Disorders | OMICS International | Abstract
ISSN: 2167-065X

Clinical Pharmacology & Biopharmaceutics
Open Access

Our Group organises 3000+ Global Conferenceseries Events every year across USA, Europe & Asia with support from 1000 more scientific Societies and Publishes 700+ Open Access Journals which contains over 50000 eminent personalities, reputed scientists as editorial board members.

Open Access Journals gaining more Readers and Citations
700 Journals and 15,000,000 Readers Each Journal is getting 25,000+ Readers

This Readership is 10 times more when compared to other Subscription Journals (Source: Google Analytics)

Review Article

BDNF and Synaptic Plasticity: The Recent Cell Biology for Understanding of Brain Disorders

Toshiyuki Mizui1,2* and Masami Kojima1,2
1Bio-interface Research Group, Health Research Inst., National Institute of Advanced Industrial Science and Technology (AIST), Osaka, Japan
2Core Research for Evolutional Science and Technology (CREST), Japan Science and Technology Agency (JST), Kawaguchi, Japan
Corresponding Author : Mizui T
Bio-interface Research Group
Health Research Inst.
National Institute of Advanced
Industrial Science and Technology (AIST)
1-8-31 Midorioka, Ikeda, Osaka
563-8577, Japan
E-mail: [email protected]
Received November 27, 2012; Accepted March 20, 2013; Published March 26, 2013
Citation: Mizui T, Kojima M (2013) BDNF and Synaptic Plasticity: The Recent Cell Biology for Understanding of Brain Disorders. Clin Pharmacol Biopharm S1:004. doi:10.4172/2167-065X.S1-004
Copyright: © 2013 Mizui T, et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Abstract

The cell biology of synaptic plasticity and neurotrophic factor has been extending to the understanding of pathological mechanisms of brain disorders. This knowledge could prove beneficial for the development of new therapies against brain diseases. Dendritic spines are actin-rich structures, which are part of most excitatory synapses in the central nervous systems. Recent studies have shown that the morphological plasticity of the spine plays a crucial role in higher brain functions, such as learning and memory. How neuronal activity modifies the morphology of the spines is an exactly prominent issue. Brain-derived Neurotrophic Dactor (BDNF) is a traditional, yet fully characterized neurotrophic factor, and the key role in the adult brain is to modulate synaptic plasticity. This review focuses on recent advances in the research of dendrite spines, synaptic plasticity, and BDNF. Lastly, the recent research of BDNF for the development of new therapies, in particular, against depression is discussed.

Keywords

Recommended Conferences

33rd World Congress on Pharmacology

Barcelona, Spain
Share This Page
Top