Complex Regulatory Networks of Flowering Time in Rice | OMICS International | Abstract
ISSN: 2375-4338

Rice Research: Open Access
Open Access

Our Group organises 3000+ Global Conferenceseries Events every year across USA, Europe & Asia with support from 1000 more scientific Societies and Publishes 700+ Open Access Journals which contains over 50000 eminent personalities, reputed scientists as editorial board members.

Open Access Journals gaining more Readers and Citations
700 Journals and 15,000,000 Readers Each Journal is getting 25,000+ Readers

This Readership is 10 times more when compared to other Subscription Journals (Source: Google Analytics)

Research Article

Complex Regulatory Networks of Flowering Time in Rice

Yang-Seok Lee and Gynheung An*
Crop Biotech Institute & Graduate School of Biotechnology, Kyung Hee University, Yongin 446-701, Korea
Corresponding Author : Gynheung An
Crop Biotech Institute & Graduate School
of Biotechnology, Kyung Hee University
Yongin 446-701, Korea
Tel: +86 512 6272 9029
E-mail: [email protected]
Received March 19, 2015; Accepted April 22, 2015; Published April 26, 2015
Citation: Lee YS, An G (2015) Complex Regulatory Networks of Flowering Time in Rice. J Rice Res 3:141. doi: 10.4172/2375-4338.1000141
Copyright: ©2015 Lee YS, et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
Related article at
DownloadPubmed DownloadScholar Google


Rice flowering is inhibited when days are long during Spring and early Summer. This phenomenon is mediated by several independent pathways. Several genes are preferentially expressed under such conditions, including Grain yield and heading date 7 (Ghd7), Heading date 1 (Hd1), Heading date 5 (Hd5), and Heading date 6 (Hd6). By contrast, Oryza sativa Constans-like 4 (OsCOL4) deters flowering regardless of day length. The AP2-like genes Supernumerary Bract (SNB) and Oryza sativa Indeterminate Spikelet1 (OsIDS1) constitutively inhibit flowering. However, as days become shorter in late Summer, flowering is induced. Although Hd1 protein functions as a repressor under long days, it becomes a promoter under short days (SD). Both OsMADS50 and OsDof12 induce flowering specifically under LD, while Oryza sativa Indeterminate 1 (OsId1) causes flowering regardless of day length. Levels of expression by the repressors decrease as plants mature. For example, Ghd7 transcripts are more abundant in young plants. Transcripts of SNB and OsIDS1 are degraded by miR172, which is induced in older plants. Most of the upstream signals are transferred to Early heading date 1 (Ehd1), an immediate upstream regulator of the florigen genes Heading data 3a (Hd3a) and Rice FT 1 (RFT1). However, some signals directly turn on the florigens that are transferred to the shoot apical meristem, where the reproductive transition occurs.