alexa Corrosion Resistant Titanium Alloys for Medical Tools and Implants | OMICS International | Abstract
ISSN: 2168-9806

Journal of Powder Metallurgy & Mining
Open Access

Our Group organises 3000+ Global Conferenceseries Events every year across USA, Europe & Asia with support from 1000 more scientific Societies and Publishes 700+ Open Access Journals which contains over 50000 eminent personalities, reputed scientists as editorial board members.

Open Access Journals gaining more Readers and Citations
700 Journals and 15,000,000 Readers Each Journal is getting 25,000+ Readers

This Readership is 10 times more when compared to other Subscription Journals (Source: Google Analytics)

Short Communication

Corrosion Resistant Titanium Alloys for Medical Tools and Implants

Corby Anderson1*, Manana Mikaberidze2, George Gordeziani2, Eteri Gozalishvili2, Lia Akhvlediani2 and Dali Ramazashvili2

1Kroll Institute for Extractive Metallurgy, Colorado School of Mines, Golden Colorado, USA

2Tavadze Institute of Metallurgy and Materials Science, Tbilisi, Georgia, USA

*Corresponding Author:
Corby Anderson
Kroll Institute for Extractive Metallurgy
Colorado School of Mines, Golden Colorado, USA
E-mail:[email protected]

Received Date: June 20, 2013; Accepted Date: August 01, 2013; Published Date: August 08, 2013

Citation: Anderson C, Mikaberidze M, Gordeziani G, Gozalishvili E, Akhvlediani L, et al. (2013) Corrosion Resistant Titanium Alloys for Medical Tools and Implants. J Powder Metall Min 2:110. doi: 10.4172/2168-9806.1000110

Copyright: © 2013 Anderson C, et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Abstract

New corrosion resistant Ti-8Ni-Cr system alloys with increased hardness and strength have been developed for medical tools and implants. The development was made based on study of chromium influence on the phase constituents, microstructure, mechanical properties, corrosion resistance and electrochemical characteristics of Ti- 8Ni alloy. Optimum condition of thermal treatment, providing high strength, hardness and corrosion resistance of alloys has been defined – quenching from 950°C with content of chromium in alloys 1 – 3% (by addition of Yttrium in quantity 0,001 – 0,01 mass%). The cause is that alloys after quenching from 950°C have structure of transformed β-solid solution and contain ω-phase, which is micro dispersive during concentration of chromium up to 1-3%. On the base of studying of the phase equilibrium by microstructural, x-ray investigations and differential thermal analysis of Ti-8Ni-Cr system alloys polythermal sections of phase diagram of this system have been constructed, which is in complete accordance with the phase diagram formed by thermodynamic calculations. Study of mechanical properties of Ti-8Ni-(0-3) Cr quenching alloys show, that chromium increases the tensile strength (1000MPa) and hardness (48 HRC) and slightly influences on plastic properties of the Ti-8Ni alloy. Tensile strength of titanium commercial alloys: Ti-6Al-4V and Ti-5Al-3Sn do not exceed 900 MPA. Corrosion tests in medium containing human body: blood, physiological solution, gastric juice, tissue liquid and also corrosion testing according to the following regime: cleaning+disinfection+sterilization in aggressive solutions with addition of hydrogen peroxide reveal high corrosion resistance of Ti-8Ni-(0-3)Cr alloys, without the changing of surface. After 20 cycles corrosion losses of the commercial titanium alloys are ~ one order more than the losses of new alloys. Study of toxic properties of alloys Ti- 8Ni-(1-3)Cr during their implantation in muscles and abdominal cavity of animals show, that they do not cause local irritative actions on different tissues, they do not suppress local tissue reactions and do not have any toxic effects during short or long term implantation conditions. High corrosion resistance of alloy Ti-8Ni-1Cr is established also by the modeling and prediction of corrosion behavior in the physiological solution at the temperature 37oC with using of electrochemical investigations, spectral analysis, regression and variance analysis of the mathematical statistics. Alloys Ti-8Ni-(1-3)% Cr are recommended for manufacturing high-strength medical tools of multiply usage and surgical implants. Application of new alloys will allow improving functional properties and increase quality, reliability, service life of medical tools and implants.

Keywords

Recommended Conferences
Share This Page
Top