alexa Cumulative Effect of Common Genetic Variants Predicts Incident Type2 Diabetes: A Study of 21,183 Subjects from Three Large Prospective Cohorts | OMICS International | Abstract
ISSN: 2161-1165

Epidemiology: Open Access
Open Access

Like us on:

Our Group organises 3000+ Global Conferenceseries Events every year across USA, Europe & Asia with support from 1000 more scientific Societies and Publishes 700+ Open Access Journals which contains over 50000 eminent personalities, reputed scientists as editorial board members.

Open Access Journals gaining more Readers and Citations
700 Journals and 15,000,000 Readers Each Journal is getting 25,000+ Readers

This Readership is 10 times more when compared to other Subscription Journals (Source: Google Analytics)

Research Article

Cumulative Effect of Common Genetic Variants Predicts Incident Type2 Diabetes: A Study of 21,183 Subjects from Three Large Prospective Cohorts

Jingyun Yang and Jinying Zhao*

Department of Biostatistics and Epidemiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104

*Corresponding Author:
Dr. Jinying Zhao, MD, PhD
Department of Biostatistics and Epidemiology
College of Public Health
University of Oklahoma HSC
801 NE 13th Street
Oklahoma City, OK 73104
Tel: 405-271-2229
Fax: 405-271-2068
E-mail: [email protected]

Received date:September 26, 2011; Accepted date: November 05, 2011; Published date: November 16, 2011

Citation: Yang J, Zhao J (2011) Cumulative Effect of Common Genetic Variants Predicts Incident Type 2 Diabetes: A Study of 21,183 Subjects from Three Large Prospective Cohorts. Epidemiol 1:108. doi: 10.4172/2161-1165.1000108

Copyright: © 2011 Yang J, et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Abstract

Recent genome-wide association studies (GWAS) and their meta-analyses have identified multiple genetic loci that are associated with type 2 diabetes (T2D). Except for variants in the TCF7L2 gene which had a modest effect on diabetic risk, most genetic variants identified so far have only a weak association with diabetes. It is possible that the combination of multiple variants may have a larger effect on disease risk and improve risk prediction. In this study, we focus on SNPs that had been robustly replicated in previous GWAS and were also genotyped in a large sample of 21,183 participants from three large prospective cohorts, including Atherosclerosis Risk in Communities (ARIC) Study, Framingham Offspring Study (FOS) and Multi-Ethnic Study of Atherosclerosis (MESA). Among these, we were able to successfully confirm the associations of 12 SNPs with baseline prevalent T2D in these two cohorts. A genotype risk score (GRS) using these12 risk variants was constructed to examine whether GRS predicts incident diabetes. In a combined meta-analysis, subjects in the highest tertile of GRS had a 1.62-fold increased risk of incident T2D (95% CI, 1.08-2.44, P=1.5×10-14) compared to those in the lowest tertile of GRS after adjustment for age, sex, race, smoking, body mass index (BMI), lipids (HDL and LDL) and systolic blood pressure. Moreover, GRS significantly improves risk prediction and reclassification in T2D beyond known risk factors.

Keywords

Top