alexa Evaluation of the Impact of Biofield Treatment on Physical and Thermal Properties of Casein Enzyme Hydrolysate and Casein Yeas t Peptone | OMICS International | Abstract
ISSN: 2167-065X

Clinical Pharmacology & Biopharmaceutics
Open Access

Our Group organises 3000+ Global Conferenceseries Events every year across USA, Europe & Asia with support from 1000 more scientific Societies and Publishes 700+ Open Access Journals which contains over 50000 eminent personalities, reputed scientists as editorial board members.

Open Access Journals gaining more Readers and Citations
700 Journals and 15,000,000 Readers Each Journal is getting 25,000+ Readers

This Readership is 10 times more when compared to other Subscription Journals (Source: Google Analytics)

Research Article

Evaluation of the Impact of Biofield Treatment on Physical and Thermal Properties of Casein Enzyme Hydrolysate and Casein Yeas t Peptone

Trivedi MK, Nayak G, Patil S*, Tallapragada RM, Jana S and Mishra R
Trivedi Global Inc., 10624 S Eastern Avenue Suite A-969, Henderson, NV 89052, USA
*Corresponding Author : Shrikant Patil
Trivedi Global Inc., 10624 S Eastern
Avenue Suite A-969, Henderson, NV 89052, USA
Tel: +1 602-531-5400
E-mail: [email protected] trivedieffect.com
Received: June 10, 2015 Accepted: June 29, 2015 Published: July 06, 2015
Citation: Trivedi MK, Nayak G, Patil S, Tallapragada RM, Jana S, et al (2015) Evaluation of the Impact of Biofield Treatment on Physical and Thermal Properties of Casein Enzyme Hydrolysate and Casein Yeast Peptone. Clin Pharmacol Biopharm 4:138. doi:10.4172/2167-065X.1000138
Copyright: © 2015 Trivedi MK, et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Abstract

In the present study, the influence of biofield treatment on physical and thermal properties of Casein Enzyme Hydrolysate (CEH) and Casein Yeast Peptone (CYP) were investigated. The control and treated samples were characterized by Fourier transform infrared (FT-IR) spectroscopy, differential scanning calorimetry (DSC), Thermo Gravimetric Analysis (TGA), particle size and surface area analysis. The FTIR results revealed that biofield treatment has caused reduction of amide group (amide-I and amide-II) stretching vibration peak that is associated with strong intermolecular hydrogen bonding in treated CEH as compared to control. However, no significant changes were observed in FTIR spectrum of treated CYP. The TGA analysis of treated CEH showed a substantial improvement in thermal stability which was confirmed by increase in maximum thermal decomposition temperature (217°C) as compared to control (209°C). Similarly, the treated CYP also showed enhanced thermal stability as compared to control. DSC showed increase in melting temperature of treated CYP as compared to control. However the melting peak was absent in DSC of treated CEH which was probably due to rigid chain of the protein. The surface area of treated CEH was increased by 83% as compared to control. However, a decrease (7.3%) in surface area was observed in treated CYP. The particle size analysis of treated CEH showed a significant increase in average particle size (d50) and d99 value (maximum particle size below which 99% of particles are present) as compared to control sample. Similarly, the treated CYP also showed a substantial increase in d50 and d99 values which was probably due to the agglomeration of the particles which led to formation of bigger microparticles. The result showed that the biofield treated CEH and CYP could be used as a matrix for pharmaceutical applications.

Keywords

Recommended Conferences

33rd World Congress on Pharmacology

Barcelona, Spain
Share This Page
Top