alexa Hyaluronic Acid and Derivatives for Tissue Engineering.
ISSN: 2155-952X

Journal of Biotechnology & Biomaterials
Open Access

Like us on:
OMICS International organises 3000+ Global Conferenceseries Events every year across USA, Europe & Asia with support from 1000 more scientific Societies and Publishes 700+ Open Access Journals which contains over 50000 eminent personalities, reputed scientists as editorial board members.

Open Access Journals gaining more Readers and Citations

700 Journals and 15,000,000 Readers Each Journal is getting 25,000+ Readers

This Readership is 10 times more when compared to other Subscription Journals (Source: Google Analytics)

Research Article

Hyaluronic Acid and Derivatives for Tissue Engineering.

Farid Menaa1, Abder Menaa2 and Bouzid Menaa1*

1Fluorotronics, Inc, Departments of Life Sciences, Chemistry and Nanobiotechnology, 2453 Cades Way, Bldg C, San Diego, CA 92081, USA

2Centre Medical des Guittieres, Departments of Aesthetic and Anti-Aging Medicine, Rue des Guittieres, Saint-Philbert de Grand lieu 44310, France

Corresponding Author:
Dr. B Menaa
Fluorotronics, Inc, Departments of Life Sciences
Chemistry and Nanobiotechnology, 2453 Cades Way
Bldg C, San Diego, CA 92081, USA
E-mail: [email protected], [email protected]

Received date: July 14, 2011; Accepted date: November 14, 2011; Published date: November 16, 2011

Citation: Menaa F, Menaa A, Menaa B (2011) Hyaluronic Acid and Derivatives for Tissue Engineering. J Biotechnol Biomaterial S3:001. doi:10.4172/2155-952X. S3-001

Copyright: © 2011 Menaa F, et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

 

Abstract

Among the protein-based hydrogel-forming polymers, various salts of hyaluronic acid (HA), aka hyaluronan or sodium hyaluronate, are used to prepare tissue-engineering. HA is a natural occurring glycosaminoglycan, a polysaccharide of high molecular weight which displays interesting viscoelastic properties. Among other organisms, HA is omnipresent in the human body, occurring in almost all biological fluids and tissues, although the highest amounts of HA are found in the extracellular matrix of soft connective tissues. HA is synthesized in a unique manner by a family of hyaluronan synthases and degraded by hyaluronidases and, exerts pleiotropic biological functions such as tissue repair and tissue regeneration. The excellent biocompatibility and biodegradability of HAderived hydrogels make them ideal materials for tissue engineering. Nevertheless, because of their hydrophilic nature, further modification with adhesion-mediating peptides is required to allow sufficient cell attachment. Hence, several methods of chemical cross-linking using different linkers have been investigated to improve the mechanical properties of those materials for long-term applications in the biomedical field. This manuscript provide an overview of HA and derivatives used as biomaterial scaffold for theranostic medicine.

Keywords

Share This Page

Additional Info

Loading
Loading Please wait..
 
Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

 
© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords