Our Group organises 3000+ Global Conferenceseries Events every year across USA, Europe & Asia with support from 1000 more scientific Societies and Publishes 700+ Open Access Journals which contains over 50000 eminent personalities, reputed scientists as editorial board members.

Open Access Journals gaining more Readers and Citations
700 Journals and 15,000,000 Readers Each Journal is getting 25,000+ Readers

This Readership is 10 times more when compared to other Subscription Journals (Source: Google Analytics)

Research Article

Methane Emission Trend based on the Water Management during Rice Growing and Non-growing Seasons

Ishwar Pun1* and Eiji Yamaji

Graduate School of Frontier Sciences, The University of Tokyo, Kashiwanoha 5-1-5, Kashiwa City, Chiba Prefecture 277-8563, Japan

Corresponding Author:
Ishwar Pun
Graduate School of Frontier Sciences
The University of Tokyo, Kashiwanoha 5-1-5
Kashiwa City, Chiba Prefecture 277-8563, Japan
Tel: +81-4-7136-4850
Fax: +81-4-7136-4842
E-mail: punisr@gmail.com

Received Date: 21 June, 2016; Accepted Date: 22 September 2016; Published Date: 29 September 2016

Citation: Pun I, Yamaji E (2016) Methane Emission Trend based on the Water Management during Rice Growing and Non-growing Seasons. J Rice Res 4:176. doi: 10.4172/2375-4338.1000176

Copyright: © 2016 Pun I, et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Abstract

Paddy fields are thought to be a major greenhouse gases emitter. Several studies have investigated the reduction of greenhouse gases emission from paddy fields by applying AWD irrigation (alternative wetting and drying), a method of water management practiced during rice growing seasons. However, few studies have conducted lysimeter experiments in which the irrigation, fertilizers, and drainage system are controlled to reduce the emission. Therefore, this study was conducted in a small scale lysimeter (500×160) cm2 on the rooftop of the Environmental Studies Building in the Kashiwa campus of the University of Tokyo from May to December 2013 to investigate methane emission patterns by observing depth-wise physicochemical properties of the soil. Soil pH, ORP (Oxidation Reduction Potential), temperature, and water content were also recorded at different soil depths of 5 cm, 10 cm, 15 cm and 20 cm. Japanese rice variety Koshihikari was transplanted, and the plant was irrigated depending on rainfall events throughout the experiment. Gas sampling was performed based on the ponding condition of the lysimeter. The results showed that methane flux occurred when the ORP dropped to -150 mV at a level 5 to 15 cm deep from the upper soil surface. The methane flux was higher during the rapid development of rice plants in vegetative phase. Methane flux also showed a positive correlation with soil water content and temperature at different soil depths. The global warming potential during rice growing and non-growing seasons from total methane emission was 0.72 and -0.21 g CO2 m-2 respectively. The results suggest that avoiding water stress for plants by a proper water management during vegetative phase is effective for the mitigation of methane release.

Keywords

Recommended Conferences
Google Scholar citation report
Citations : 1615

Rice Research: Open Access received 1615 citations as per Google Scholar report

Rice Research: Open Access peer review process verified at publons
Indexed In
  • Index Copernicus
  • Google Scholar
  • Open J Gate
  • Academic Keys
  • Electronic Journals Library
  • RefSeek
  • Directory of Research Journal Indexing (DRJI)
  • Hamdard University
  • EBSCO A-Z
  • OCLC- WorldCat
  • Scholarsteer
  • SWB online catalog
  • Virtual Library of Biology (vifabio)
  • Publons
  • Euro Pub
Share This Page
Top