alexa Microbial Conversion of Plant Based Polyunsaturated Fatty Acid (PUFA) To Long Chain PUFA and Its Identification by Gas Chromatography | OMICS International | Abstract
ISSN: 2155-952X

Journal of Biotechnology & Biomaterials
Open Access

Like us on:

Our Group organises 3000+ Global Conferenceseries Events every year across USA, Europe & Asia with support from 1000 more scientific Societies and Publishes 700+ Open Access Journals which contains over 50000 eminent personalities, reputed scientists as editorial board members.

Open Access Journals gaining more Readers and Citations
700 Journals and 15,000,000 Readers Each Journal is getting 25,000+ Readers

This Readership is 10 times more when compared to other Subscription Journals (Source: Google Analytics)

Research Article

Microbial Conversion of Plant Based Polyunsaturated Fatty Acid (PUFA) To Long Chain PUFA and Its Identification by Gas Chromatography

Shilpa Deshpande*, Tushar Patil, Snehal Alone and Nandkishor Duragkar

Sharad Pawar College of Pharmacy, Wanadongri, Hingna Road, Nagpur 440011, India

Corresponding Author:
Shilpa Deshpande
Sharad Pawar College of Pharmacy, Wanadongri
Hingna Road, Nagpur 440011, India
Tel: +91-09422443171
E-mail: [email protected]

Received date: January 14, 2013; Accepted date: February 06, 2013; Published date: February 10, 2013

Citation: Deshpande S, Patil T, Alone S, Duragkar N (2013) Microbial Conversion of Plant Based Polyunsaturated Fatty Acid (PUFA) To Long Chain PUFA and Its Identification by Gas Chromatography. J Biotechnol Biomaterial S13:006. doi:10.4172/2155-952X.S13-006

Copyright: © 2012 Deshpande S, et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Abstract

Abstract
Background: Omega-3-fatty acids are essential fatty acids necessary for various human health aspects.
Humans can get Alpha-linolenic Acid (ALA) from plants and can convert to LCPUFAs, but to very less extent.
LCPUFAs can be obtained only from fish oil which is not acceptable by vegetarian population. Hence, there is a need of an alternative process for LCPUFA production either from microorganisms or by biological engineering method using plant oil containing ALA. But plant oils also contain Linoleic Acid (LA) which forms Arachidonic Acid (AA) which is pro-inflammatory. Hence, to avoid conversion of LA to AA, ALA can be isolated prior to microbial conversion.
Objective: Hence the objective of the present study was to isolate ALA from plant oil by simple method of
column chromatography and convert to LCPUFA by microbial transformation.
Experimental methods: ALA was isolated from rice bran oil by column chromatography. Fungal strain of
Mortierella alpina was inoculated into GY medium containing three different concentrations of isolated ALA followed by incubation at 20á´¼C for 8 and 15 days. The isolated ALA and microbially converted EPA were identified by TLC and GC.
Results: In 10% ALA concentration, maximum conversion to EPA was found on 8th day. The EPA in medium was identified and confirmed by TLC and GC compared with reference standard.
Conclusion: The technique of isolation of ALA from plant oil by column chromatography and its microbial
conversion to EPA was found to be simple, less time consuming and effective which can be successfully applied to any oil containing ALA to get significant yield of EPA. This can be the good alternative to fish oil for EPA production.

Keywords

Recommended Conferences
Share This Page
Top