alexa Microstructure, Mechanical Properties and Corrosion Beh
ISSN: 2168-9806

Journal of Powder Metallurgy & Mining
Open Access

OMICS International organises 3000+ Global Conferenceseries Events every year across USA, Europe & Asia with support from 1000 more scientific Societies and Publishes 700+ Open Access Journals which contains over 50000 eminent personalities, reputed scientists as editorial board members.

Open Access Journals gaining more Readers and Citations

700 Journals and 15,000,000 Readers Each Journal is getting 25,000+ Readers

This Readership is 10 times more when compared to other Subscription Journals (Source: Google Analytics)

Research Article

Microstructure, Mechanical Properties and Corrosion Behavior of As-Extruded PM Sicp/Al-Mg-Cu-Sn Composites

Shen RJ1,2, Xiao DH1*, Zhou PF1 and Song M1,2

1State Key Laboratory of Powder Metallurgy, Central South University, Changsha, China

2Shenzhen Research Institute, Central South University, Shenzhen, China

Corresponding Author:
Xiao DH
State Key Laboratory of Powder Metallurgy
Central South University, Changsha, China
Tel: +86-731-88877880
Fax: +86-731-88710855
E-mail: [email protected]

Received date: March 20, 2016; Accepted date: May 30, 2016; Published date: June 06, 2016

Citation: Shen RJ, Xiao DH, Zhou PF, Song M (2016) Microstructure, Mechanical Properties and Corrosion Behavior of As-Extruded PM Sicp/Al-Mg-Cu-Sn Composites. J Powder Metall Min 5:141. doi:10.4172/2168-9806.1000141

Copyright: © 2016 Shen RJ, et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

 

Abstract

SiC particle reinforced powder metallurgy (PM) Al-Mg-Cu-Sn matrix composites were fabricated by hot-press sintering and hot extrusion. The effects of solution treatment temperature and SiC particle content on the microstructure, mechanical properties and corrosion behavior of the composites were studied using scanning electron microscopy, Vickers hardness testing, tensile testing and electrochemical experiments. The results show that increasing SiC particle content improves the tensile strength of the Al-Mg-Cu-Sn matrix composites between room temperature and cryogenic temperature. The yield strength of Al-Mg-Cu-Sn composite with 10 vol.% SiC particle content between at 293 K and 77 K increases from 63 MPa to 276 MPa and 106 MPa to 327 MPa, respectively. The solution treatment temperature distinctly affects the Vickers hardness of the SiCp/Al-Mg-Cu-Sn composites. The maximum Vickers hardness of the 10 vol.% SiCp/Al-Mg-Cu-Sn composite is 92 HV after solution treatment at 773 K followed by ageing. The corrosion behavior of Al-Mg-Cu-Sn matrix composites is affected by both the SiC particle content and solution treatment temperature

Keywords

Share This Page

Additional Info

Loading
Loading Please wait..
 
Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

 
© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords