ISSN: 2155-9910

Journal of Marine Science: Research & Development
Open Access

Our Group organises 3000+ Global Conferenceseries Events every year across USA, Europe & Asia with support from 1000 more scientific Societies and Publishes 700+ Open Access Journals which contains over 50000 eminent personalities, reputed scientists as editorial board members.

Open Access Journals gaining more Readers and Citations
700 Journals and 15,000,000 Readers Each Journal is getting 25,000+ Readers

This Readership is 10 times more when compared to other Subscription Journals (Source: Google Analytics)

Research Article

Observations of an Extra-Large Subsurface Anticyclonic Eddy in the Northwestern Pacific Subtropical Gyre

Feng Nan1, Fei Yu1,2*, Chuanjie Wei1, Qiang Ren1 and Conghui Fan1

1Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China

2University of Chinese Academy of Sciences, Beijing, China

Corresponding Author:
Dr. Fei Yu
Institute of Oceanology
Chinese Academy of Sciences
7 Nanhai Road, Qingdao 266071, China
Tel: (86)053282898187
Fax: (86)053282898186
E-mail: yuf@qdio.ac.cn

Received Date: July 05, 2017; Accepted Date: July 26, 2017; Published Date: July 30, 2017

Citation: Feng Nan, Yu F, Wei C, Ren Q, Fan C (2017) Observations of an Extra-Large Subsurface Anticyclonic Eddy in the Northwestern Pacific Subtropical Gyre. J Marine Sci Res Dev 7:234. doi: 10.4172/2155-9910.1000234

Copyright: © 2017 Feng Nan, et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Abstract

An extra-large subsurface anticyclonic eddy (SAE) with horizontal scale of 470 km was detected in the northwestern Pacific subtropical gyre by in situ measurements in October 2014. The SAE exhibited a lens-shaped vertical structure with shoaling of the seasonal thermocline and deepening of the main thermocline. Consequently, the water in the eddy core was colder above 200 m and warmer below 200 m than the surrounding waters with maximum temperature anomalies of -1.2°C and 3.5°C located at ~100 m and ~450 m depths, respectively. The central water mass of the SAE was characterized as low potential vorticity water, i.e., the north Pacific Subtropical Mode Water (STMW). Swirl velocity of the SAE was directly observed by ship-mounted ADCP (Acoustic Doppler Current Profilers). The maximum azimuthal velocity reached 0.35 ms-1 near a 110 km radius at ~ 200 m depth, which was comparable with the maximum velocity of the northward Kuroshio east of Taiwan at the same depth. Threedimensional structure and evolutionary process of the SAE were also presented using Argo float profile data as well as the satellite altimeter data. The results indicated that the SAE was generated in the region of the STMW in February, then propagated westward over 1500 km at a mean speed of ~0.06 ms-1 and finally disappeared east of Taiwan in December, transporting ~0.5 Sv (Sv=106 m3s-1) STMW.

Keywords

Google Scholar citation report
Citations : 3189

Journal of Marine Science: Research & Development received 3189 citations as per Google Scholar report

Indexed In
  • CAS Source Index (CASSI)
  • Index Copernicus
  • Google Scholar
  • Sherpa Romeo
  • Open J Gate
  • Genamics JournalSeek
  • Academic Keys
  • ResearchBible
  • Ulrich's Periodicals Directory
  • Electronic Journals Library
  • RefSeek
  • Directory of Research Journal Indexing (DRJI)
  • Hamdard University
  • EBSCO A-Z
  • OCLC- WorldCat
  • Scholarsteer
  • SWB online catalog
  • Virtual Library of Biology (vifabio)
  • Publons
Share This Page
Top