alexa Petrology and Alteration of Calcium Sulphate Deposits i
ISSN: 2157-7617

Journal of Earth Science & Climatic Change
Open Access

Like us on:
OMICS International organises 3000+ Global Conferenceseries Events every year across USA, Europe & Asia with support from 1000 more scientific Societies and Publishes 700+ Open Access Journals which contains over 50000 eminent personalities, reputed scientists as editorial board members.

Open Access Journals gaining more Readers and Citations

700 Journals and 15,000,000 Readers Each Journal is getting 25,000+ Readers

This Readership is 10 times more when compared to other Subscription Journals (Source: Google Analytics)

Research Article

Petrology and Alteration of Calcium Sulphate Deposits in Late Paleozoic Rocks of Wang Saphung Area, Loei Province, Thailand

Nusara S1*, Punya C2, Sarunya P and Ken-Ichiro H1

1Graduate School of Life and Environmental Sciences, University of Tsukuba, Japan

2Department of Geology, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand

3Department of Geotechnology, Faculty of Technology, Khon Kaen University, Khon Kaen, 40002, Thailand

*Corresponding Author:
Nusara S
Graduate School of Life and Environmental
Sciences, University of Tsukuba, Japan
Tel: 6643362125
E-mail: [email protected]

Received date: December 22, 2016; Accepted date: January 23, 2017; Published date: January 30, 2017

Citation: Nusara S, Punya C, Sarunya P, Ken-Ichiro H (2017) Petrology and Alteration of Calcium Sulphate Deposits in Late Paleozoic Rocks of Wang Saphung Area, Loei Province, Thailand. J Earth Sci Clim Change 8:384. doi: 10.4172/2157-7617.1000384

Copyright: © 2017 Nusara S, et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

 

Abstract

The gypsum-anhydrite deposit in Loei-Wang Saphung (LWS) area of northeastern Thailand is a small evaporite sediment deposit with up to 50 m thick gypsum-anhydrite beds. The evaporite deposits are overlain by cross-laminated and fine-grained siliciclastic and carbonate rocks of the Carboniferous to Permian ages. This paper documents some characteristics of the deposits, including lithologies, textures, and structures of gypsum-anhydrite and associated rocks, based on the stratigraphic core logging of boreholes and lithofacies analysis of selected samples.

Morphological and textural mineralogical relationships reveal 10 textures of the evaporite formation viz. alabastrine gypsum, satin spar gypsum, selenite gypsum, gypsarenite, porphyroblastic gypsum, fine lenticular gypsum, crystalloblastic or blocky anhydrite, prismatic anhydrite, epigenetic anhydrite, and felty epigenetic anhydrite. The results also indicate that the LWS sulfate deposit has passed through at least 4 evolutionary alterations; (1) original precipitation as gypsum deposit, (2) gypsum-to-anhydrite transformation resulting from burial diagenesis in response to basinal subsidence, (3) rehydration of anhydrite-to-gypsum, indicated by distorted gypsum rocks, resulting from the increase of volume due to the rehydration from anhydrite to gypsum, and recrystallization of anhydrite and/or primary gypsum to secondary gypsum (4) uplift and re-expose of gypsum, indicated by the karstification and dissolution cavities and gypsarenite veins. The gypsum-anhydrite beds with associated carbonate and mud rocks suggest that these sedimentary sequences form in a subaqueous, probably shallow marine marginal setting during Late Carboniferous.

Keywords

Share This Page

Additional Info

Loading
Loading Please wait..
 
Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

 
© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords