Short Communication
Role of Focal Adhesions in Lamellipodia Dynamics
Yongwan Kim1 and Myeong Gu Yeo2*1Department of Hotel Culinary, Nambu University, Gwangju 506-706, Korea
2Department of Integrative Medical Sciences, Nambu University, Gwangju 506-706, Korea
- Corresponding Author:
- Myeong Gu Yeo
Department of Integrative Medical Sciences
Nambu University, 23 Chumdan Jungang-ro
Gwangsan-gu, Gwangju, 506-706, Korea
Tel: 82629700169
E-mail: mgy11@nambu.ac.kr
Received date:: January 30, 2015; Accepted date:: June 23, 2015; Published date:: June 29, 2015
Citation: Kim Y, Yeo MG (2015) Role of Focal Adhesions in Lamellipodia Dynamics. J Biotechnol Biomater 5:185. doi:10.4172/2155-952X.1000185
Copyright: © 2015 Kim Y, et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
Abstract
Focal adhesions (FAs) are multi-protein structures containing integrin that serve as a focal point for the association between the extracellular matrix (ECM) and actin cytoskeleton. After cells adhere to the ECM, the cell membrane forms filopodia and lamellipodia. Cells deficient in FA complexes show reduced lamellipodia dynamics and this deficiency influences cell migration. Lamellipodia dynamics have distinguishable stages of lamellipodia protrusion, retraction, and persistence. Particularly, cells with decreasing or absent FA formation commonly show longer persistence time as analyzed using computer-assisted stroboscopic analysis. These results indicate that after cells adhere to the substratum, the reduced lamellipodia dynamics associated with defective FA formation influences cell motility.