alexa
Reach Us +447460731551
Spatial and Temporal Variation of Impacts of Climate Change on the Hydrometeorology of Indus River Basin Using RCPs Scenarios, South East Asia | OMICS International | Abstract
ISSN: 2157-7617

Journal of Earth Science & Climatic Change
Open Access

Like us on:

OMICS International organises 3000+ Global Conferenceseries Events every year across USA, Europe & Asia with support from 1000 more scientific Societies and Publishes 700+ Open Access Journals which contains over 50000 eminent personalities, reputed scientists as editorial board members.

Open Access Journals gaining more Readers and Citations
700 Journals and 15,000,000 Readers Each Journal is getting 25,000+ Readers

This Readership is 10 times more when compared to other Subscription Journals (Source: Google Analytics)
All submissions of the EM system will be redirected to Online Manuscript Submission System. Authors are requested to submit articles directly to Online Manuscript Submission System of respective journal.

Research Article

Spatial and Temporal Variation of Impacts of Climate Change on the Hydrometeorology of Indus River Basin Using RCPs Scenarios, South East Asia

Gebre SL1* and Fulco Ludwig2
1Department of Natural Resources Management, Jimma University, Ethiopia
2Department of Earth System Science, Wageningen University and Research Center, The Netherlands
Corresponding Author : Gebre SL
Department of Natural Resources Management
Jimma University, Ethiopia
Tel: +251-471123170
E-mail: [email protected]
Received November 09, 2014; Accepted December 01, 2014; Published December 10, 2014
Citation: Gebre SL, Ludwig F (2014) Spatial and Temporal Variation of Impacts of Climate Change on the Hydrometeorology of Indus River Basin Using RCPs Scenarios, South East Asia. J Earth Sci Clim Change 5:241. doi:10.4172/2157-7617.1000241
Copyright: © 2014 Gebre SL, et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Abstract

In this study we assessed the spatio temporal impacts of climate change on the hydrometeorology of Indus River basin. A 0.5 by 0.5 degree resolution data of Coupled Model Intercomparison Phase5 (CMIP5) global climate models (GCMs) output of precipitation and temperature (maximum and minimum) and VIC (Vertical Infiltration Capacity- Macroscale hydrological model) simulation results of evaporation and total runoff at the out let of the Arabian peninsula for 2030`s (2035-2064) and 2070`s (2071-2100) under (Representative Concentration Pathway) RCP 4.5 and RCP 8.5 emissions scenarios used. Arc GIS 10.2 extension of ordinary kriging Geostatistical interpolation techniques applied for spatial analysis of precipitation, temperature (maximum and minimum) and evaporation for the River basin. Future projection results as compared to the base period (1971-2005) showed that the, average multimodal monthly precipitation decreases during winter and, spring months and increases during summer months, ranging in between -25% and +43%. Average seasonal spatial precipitation changes resulted various ranges of precipitation distribution for 2070`s of RCP 4.5, average seasonal precipitation decreases in the mid part of the basin up to -20%. Average temperature increase for both future periods (2030`s and 2070`s) and RCPs (RCP 4.5 and RCP 8.5) emission scenarios, maximum temperature change observed in the Himalayas Mountains. All GCMs except MPI projected increase of future average annual evaporation. Average Multimodal GCMs projection results showed that the, average monthly runoff increases more during summer than winter. The increase of runoff at the downstream flow is as a result of snow and glacial melt at the high elevation regions of the Indus River basin. The increase of runoff flow probably has positive impacts in meeting the water requirement of small scale irrigation schemes. Moreover, water can be stored in a reservoir during summer season and distributed to arid areas of the basin. Due to the increased amount of flow during summer, there may be high chance of flooding in plain areas of the basin, therefore a precaution measure have to be taken in order to minimize the possible risks of flooding on agricultural and human welfare of the society.

Keywords

Top