Strategies for Boosting Rice Yield in the Face of Climate Change in India | OMICS International | Abstract
ISSN: 2375-4338

Rice Research: Open Access
Open Access

Our Group organises 3000+ Global Conferenceseries Events every year across USA, Europe & Asia with support from 1000 more scientific Societies and Publishes 700+ Open Access Journals which contains over 50000 eminent personalities, reputed scientists as editorial board members.

Open Access Journals gaining more Readers and Citations
700 Journals and 15,000,000 Readers Each Journal is getting 25,000+ Readers

This Readership is 10 times more when compared to other Subscription Journals (Source: Google Analytics)


Strategies for Boosting Rice Yield in the Face of Climate Change in India

Bhagirath Singh Chauhan1* and Gulshan Mahajan2
1Weed Scientist, International Rice Research Institute, Philippines
2Rice Agronomist, Punjab Agricultural University, India
Corresponding Author : Bhagirath Singh Chauhan
Weed Scientist
International Rice Research Institute
E-mail: [email protected]
Received June 13, 2013; Accepted August 17, 2013; Published August 19, 2013
Citation: Chauhan BS, Mahajan G (2013) Strategies for Boosting Rice Yield in the Face of Climate Change in India. J Rice Res 1:105. doi: 10.4172/jrr.1000105
Copyright: © 2013 Chauhan BS, et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
Related article at
DownloadPubmed DownloadScholar Google


Rice (Oryza sativa L.) is an important staple crop in Asia, including India. During the era of the Green Revolution, the rate of growth in rice production was higher than the population growth and thus production was in the surplus. But now, with climate change, production and productivity gains of rice are a question mark. Rice contributes to global climate change through the emission of greenhouse gases, such as methane and nitrous oxide, which are responsible for global warming, and, in turn, suffers the consequences of climate change. To cope with the anticipated impact of this change, mitigation and adaptation strategies need to be evaluated. Mitigation of the causal factors and adaptation of the crop to changing climate are two broad strategies to restrain and cope with the changing climate; mitigation strategies aim at reducing the emission of greenhouse gases into the atmosphere, whereas the adaptation strategies aims at enabling the plant to perform optimally under adverse climatic conditions through cultural and genetic approaches.