Reach Us +1-218-451-2974


Synthetic Steps Towards Reversible Chalcogen-based Sensing Of Essential Neurodegenerative Disease Factors | 74773
ISSN: 2161-0460

Journal of Alzheimers Disease & Parkinsonism
Open Access

Like us on:

Our Group organises 3000+ Global Conferenceseries Events every year across USA, Europe & Asia with support from 1000 more scientific Societies and Publishes 700+ Open Access Journals which contains over 50000 eminent personalities, reputed scientists as editorial board members.

Open Access Journals gaining more Readers and Citations
700 Journals and 15,000,000 Readers Each Journal is getting 25,000+ Readers

This Readership is 10 times more when compared to other Subscription Journals (Source: Google Analytics)
Google Scholar citation report
Citations : 2275

Journal of Alzheimers Disease & Parkinsonism received 2275 citations as per Google Scholar report

Journal of Alzheimers Disease & Parkinsonism peer review process verified at publons
Indexed In
  • Index Copernicus
  • Google Scholar
  • Sherpa Romeo
  • Open J Gate
  • Genamics JournalSeek
  • Academic Keys
  • JournalTOCs
  • China National Knowledge Infrastructure (CNKI)
  • Electronic Journals Library
  • RefSeek
  • Hamdard University
  • OCLC- WorldCat
  • SWB online catalog
  • Virtual Library of Biology (vifabio)
  • Publons
  • Geneva Foundation for Medical Education and Research
  • Euro Pub
Share This Page

Synthetic steps towards reversible chalcogen-based sensing of essential neurodegenerative disease factors

3rd International Conference on Parkinsons disease and Movement Disorders

Tesla Yudhistira, Sandip V Mulay, Youngsam Kim and David G Churchill

Korea Advanced Institute of Science and Technology, Korea Institute for Basic Science, Korea Indonesia Endownment Fund for Education, Indonesia

ScientificTracks Abstracts: J Alzheimers Dis Parkinsonism

DOI: 10.4172/2161-0460-C1-030

The chemical etiology of Parkinson’s disease, among other neurodegenerative diseases, is multifactorial and relates to proteins, biomolecules, as well as small soluble analytes including metal ions and ROS. The over-abundance of ROS/ RNS could be an indication of Alzheimer’s and Parkinson’s disease (PD). Recent articles by us and other researchers have begun connecting the dots of this small molecule chemistry. There is incredible interest in preparing next-generation (e.g. ROS) probes that are reversible, sensitive, and also robust. Concentrations and the innate chemistry of selenium connect to proposed/tentative etiology of Parkinson’s disease. For all of these reasons and more, we feel that the pursuit of studying organo-selenium chemistry in the context of PD will be fruitful in years to come. In this oral presentation and discussion, selenium, a key element in the redox chemistry of life and for its ability to engage in catalysis, is presented and debated in terms of diagnosis (probing) as well as potentially in therapy. To-date, the role of fluorescence and fluorescent molecules in diagnosis, treatment, as well as in biomedical research, has great current medicinal significance; this is the focus of concentrated effort across the scientific research spectrum. In particular, organo-selenium and/or organo-sulfur molecules show great promise in the detection of reactive oxygen/nitrogen species (ROS/RNS)-key factors in ageing/neurodegenerative disease in living systems. The boron dipyrromethene (BODIPY) system is a versatile class of fluorescent dye; it is commonly used in labeling, chemosensing, light-harvesting, and solar cell applications due to the many compelling characteristics, including an intense absorption profile, a sharp fluorescence emission spectrum, and high fluorescence quantum yield. As part of our ongoing effort to study chalcogenide systems, dithiomaleimide- and phenyl selenide probes (among many others) have been designed, synthesized and characterized. Commonly, fluorescence is quenched by photoinduced electron transfer (PeT) mechanism. These probes show a turn-on fluorescence response upon reaction with ONOO- (BDP-NGM) and HOCl (Mes-BOD-SePh) with significant increase in emission intensity with fast response to ROS/RNS. Live cell imaging showed that the current probes can be used for the selective detection of ROS and RNS in living systems. Time- permitting, we also like to briefly showcase other recent related fluorescent probes and studies.

Tesla Yudhistira is eagerly studying for his PhD in the Department of Chemistry at the Korea Advanced Institute of Science and Technology (KAIST) under the supervision of Prof. David G Churchill. He has obtained a bachelor’s degree in Chemistry from the University of Indonesia. While pursuing science as an undergraduate, he worked in the bio electrochemistry laboratory as a student Researcher.