alexa Combining Ability Analysis for Northern Leaf Blight Dis
ISSN: 2329-8863

Advances in Crop Science and Technology
Open Access

OMICS International organises 3000+ Global Conferenceseries Events every year across USA, Europe & Asia with support from 1000 more scientific Societies and Publishes 700+ Open Access Journals which contains over 50000 eminent personalities, reputed scientists as editorial board members.

Open Access Journals gaining more Readers and Citations

700 Journals and 15,000,000 Readers Each Journal is getting 25,000+ Readers

This Readership is 10 times more when compared to other Subscription Journals (Source: Google Analytics)

Research Article

Combining Ability Analysis for Northern Leaf Blight Disease Resistance on Tanzania Adapted Inbred Maize Lines

Tulole Lugendo Bucheyeki*1,2, Pangirayi Tongoona2, John Derera2 and Suzan Nchimbi-Msolla3

1Agricultural Research Institute (ARI)-Uyole, Mbeya, Tanzania

2African Crops Centre Institute (ACCI), University of KwaZulu-Natal, KwaZulu-Natal, South Africa

3Sokoine University of Agriculture (SUA), Morogoro, Tanzania

*Corresponding Author:
Tulole Lugendo Bucheyeki
Agricultural Research Institute (ARI)-Uyole
PO Box 400, Mbeya, Tanzania
Tel: +255 782237383
E-mail: [email protected]

Received Date: March 09, 2017; Accepted Date: March 24, 2017; Published Date: March 31, 2017

Citation: Bucheyeki TL, Tongoona P, Derera J, Nchimbi-Msolla S (2017) Combining Ability Analysis for Northern Leaf Blight Disease Resistance on Tanzania Adapted Inbred Maize Lines. Adv Crop Sci Tech 5:266. doi: 10.4172/2329-8863.1000266

Copyright: © 2017 Bucheyeki TL, et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

 

Abstract

Northern leaf blight (NLB) disease incited by Exserohilum turcicum has increased in incidence and severity. Inbred lines combining ability and its interactions to the environment are required for the development of NLB disease resistance. The specific objectives were to estimate the combining ability for NLB disease resistance, determine maternal effects, and determine the heterosis in the F1 hybrids by using a full 11 × 11 diallel cross. The resulting 110 F1 hybrids with the 11 parents were evaluated together with 9 commercial varieties at three Agricultural Research Institutes: Tumbi, Uyole and Selian which represent diverse environments. Breeding materials were planted in 13 × 10 alpha lattice design with two replications per site. Top ten experimental hybrids in each site had negative mid parent heterosis for NLB disease severity. Heterosis for NLB disease severity ranged 94-362%. The overall mid parent heterosis means for yield across sites was 152%. Maternal effects had non-significant (P>0.005) influence on the inheritance of the NLB disease severity. Mean sum of squares for GCA was highly significant (P<0.001) on disease severity indicating additive gene action. Mean sum of squares for SCA were highly significant on disease severity and yield implying non-additive gene action. The mean squares for reciprocals effects were highly significant for yield and non-maternal effects sums of squares had significant effect (P<0.05) on yield. The GCA effects contribution was high for disease severity (91%) and lesion number (85%). With the exception of CML 395 and KS03-0B15-12 parents which were susceptible, all GCA effects were negative implying the contribution to disease resistance in their progenies. Due to preponderance of the additive gene action, recurrent selection could be used to improve the resistance of inbreeds while the non-additive gene action could be exploited in breeding for disease resistant high yielding hybrids.

Keywords

Share This Page

Additional Info

Loading
Loading Please wait..
 
Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

 
© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords