alexa Effect of Biofield Treatment on Structural and Morphological Properties of Silicon Carbide | OMICS International | Abstract
ISSN: 2168-9806

Journal of Powder Metallurgy & Mining
Open Access

Our Group organises 3000+ Global Conferenceseries Events every year across USA, Europe & Asia with support from 1000 more scientific Societies and Publishes 700+ Open Access Journals which contains over 50000 eminent personalities, reputed scientists as editorial board members.

Open Access Journals gaining more Readers and Citations
700 Journals and 15,000,000 Readers Each Journal is getting 25,000+ Readers

This Readership is 10 times more when compared to other Subscription Journals (Source: Google Analytics)

Research Article

Effect of Biofield Treatment on Structural and Morphological Properties of Silicon Carbide

Trivedi MK2, Nayak G2, Tallapragada RM2, Patil S2, Latiyal O1 and Jana S1*

1Trivedi Science Research Laboratory Pvt. Ltd., Hall-A, Chinar Mega Mall, Chinar Fortune City, Hoshangabad Road, Bhopal-462026, Madhya Pradesh, India

2Trivedi Global Inc., 10624 S Eastern Avenue Suite A-969, Henderson, NV 89052, USA

*Corresponding Author:
Jana S
Trivedi Science Research Laboratory Pvt. Ltd.
Hall-A, Chinar Mega Mall, Chinar Fortune City
Hoshangabad Road, Bhopal- 462026
Madhya Pradesh, India
Tel: +91-755-6660006
E-mail: [email protected]

Received Date: June 18, 2015 Accepted Date: June 25, 2015 Published Date: July 07, 2015

Citation: Trivedi MK, Nayak G, Tallapragada RM, Patil S, Latiyal O, et al. (2015) Effect of Biofield Treatment on Structural and Morphological Properties of Silicon Carbide. J Powder Metall Min 4:132. doi:10.4172/2168-9806.1000132

Copyright: © 2015 Trivedi MK, et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Abstract

Silicon carbide (SiC) is a well-known ceramic due to its excellent spectral absorbance and thermo-mechanical properties. The wide band gap, high melting point and thermal conductivity of SiC is used in high temperature applications. The present study was undertaken to investigate the effect of biofield treatment on physical, atomic, and structural characteristics of SiC powder. The control and biofield treated SiC powder was analysed using X-ray diffraction (XRD), particle size analyzer, surface area analyzer, and Fourier transform infrared (FT-IR) spectroscopy techniques with respect to control. The XRD pattern revealed that crystallite size was significantly increased by 40% in treated SiC as compared to control. The biofield treatment has induced changes in lattice parameter, density and molecular weight of atoms in the SiC powder. Particle size was increased upto 2.4% and the surface area was significantly reduced by 71.16% in treated SiC as compared to control. The FT-IR results indicated that the stretching vibrations frequency of silicon-carbon bond in treated SiC (925 cm -1 ) was shifted towards lower frequency as compared to control (947 cm -1 ). These findings suggest that biofield treatment has substantially altered the physical and structural properties of SiC powder.

Keywords

Recommended Conferences
Share This Page
Top