alexa Allokairic Regulation Of Enzyme Function
ISSN: 2155-952X

Journal of Biotechnology & Biomaterials
Open Access

Like us on:
OMICS International organises 3000+ Global Conferenceseries Events every year across USA, Europe & Asia with support from 1000 more scientific Societies and Publishes 700+ Open Access Journals which contains over 50000 eminent personalities, reputed scientists as editorial board members.

Open Access Journals gaining more Readers and Citations

700 Journals and 15,000,000 Readers Each Journal is getting 25,000+ Readers

This Readership is 10 times more when compared to other Subscription Journals (Source: Google Analytics)

Share This Page

Additional Info

Loading Please wait..

Joint Event on 15th World Congress on Biotechnology And Biotech Industries Meet and 2nd International Conference on Enzymology and Molecular Biology
March 20-21, 2017 Rome, Italy

Brian G Miller
Florida State University, USA
ScientificTracks Abstracts: J Biotechnol Biomater
DOI: 10.4172/2155-952X.C1.070
Human glucokinase (GCK), the body’s primary glucose sensor and a major determinant of glucose homeostatic diseases, displays a unique form of allosteric-like behavior that is manifested as a cooperative kinetic response to glucose. The allosteric-like behavior of GCK is particularly intriguing since the enzyme is monomeric and contains only one glucose binding site. Recent work in our laboratory has shown that millisecond timescale order-disorder transitions within the enzyme’s small domain govern cooperativity. Here, we present the results of biophysical studies that elucidate the structural and dynamic origins of the timedependent, allokairic properties of GCK. Using high-resolution nuclear magnetic resonance, we identify two distinct mechanisms by which GCK can be activated, both of which result in hyperinsulinemia. The first activation mechanism alters the equilibrium distribution of GCK conformers in favor of a single-state, whereas the second mechanism alters the intrinsic dynamics of the enzyme without perturbing the relative distribution of states in the structural ensemble. Time-resolved fluorescence measurements map the dynamic conformational landscape of GCK and provide evidence for three distinct conformations of the enzyme in the absence of glucose. Together our findings provide a framework for understanding the origins of time-dependent changes in activity in other regulatory enzymes.

Brian Miller is an Associate Professor of Biochemistry at the Florida State University, USA. He did his PhD from the University of North Carolina, Chapel Hill in the year 2001. His research interest is protein structure, function and evolution.

Email: [email protected]

image PDF   |   image HTML

Relevant Topics

Peer Reviewed Journals
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version