Dersleri yüzünden oldukça stresli bir ruh haline sikiş hikayeleri bürünüp özel matematik dersinden önce rahatlayabilmek için amatör pornolar kendisini yatak odasına kapatan genç adam telefonundan porno resimleri açtığı porno filmini keyifle seyir ederek yatağını mobil porno okşar ruh dinlendirici olduğunu iddia ettikleri özel sex resim bir masaj salonunda çalışan genç masör hem sağlık hem de huzur sikiş için gelip masaj yaptıracak olan kadını gördüğünde porn nutku tutulur tüm gün boyu seksi lezbiyenleri sikiş dikizleyerek onları en savunmasız anlarında fotoğraflayan azılı erkek lavaboya geçerek fotoğraflara bakıp koca yarağını keyifle okşamaya başlar
At-line Monitoring Flow Cytometric Approach For Lipid And Carotenoid Detection In Yeasts | 4913
ISSN: 2155-952X

Journal of Biotechnology & Biomaterials
Open Access

Like us on:

Our Group organises 3000+ Global Conferenceseries Events every year across USA, Europe & Asia with support from 1000 more scientific Societies and Publishes 700+ Open Access Journals which contains over 50000 eminent personalities, reputed scientists as editorial board members.

Open Access Journals gaining more Readers and Citations
700 Journals and 15,000,000 Readers Each Journal is getting 25,000+ Readers

This Readership is 10 times more when compared to other Subscription Journals (Source: Google Analytics)
Google Scholar citation report
Citations : 1820

Journal of Biotechnology & Biomaterials received 1820 citations as per Google Scholar report

Indexed In
  • Index Copernicus
  • Google Scholar
  • Sherpa Romeo
  • Open J Gate
  • Genamics JournalSeek
  • Academic Keys
  • ResearchBible
  • China National Knowledge Infrastructure (CNKI)
  • Access to Global Online Research in Agriculture (AGORA)
  • Electronic Journals Library
  • RefSeek
  • Hamdard University
  • OCLC- WorldCat
  • SWB online catalog
  • Virtual Library of Biology (vifabio)
  • Publons
  • Geneva Foundation for Medical Education and Research
  • Euro Pub
Share This Page

At-line monitoring flow cytometric approach for lipid and carotenoid detection in yeasts

3rd World Congress on Biotechnology

Teresa Lopes da Silva and Alberto Reis

AcceptedAbstracts: J Biotechnol Biomater

DOI: 10.4172/2155-952X.S1.021

Microbial oils can be used as feedstock for biodiesel production. Compared to other vegetable oils and animal fats, the production of microbial oil has many advantages: short life cycle, less labor required and easier to scale-up. However, at present, the major obstacle for commercialization of biodiesel obtained from microbial lipids is the high production cost involved. Therefore it is crucial to explore approaches to reduce the price of microbial biodiesel process as the coproduction of microbial lipids and high value added-products. Biodiesel production from yeasts may have particular interest as these microorganisms may contain a high lipid content which can be extracted and converted into biofuel. In addition, some yeasts (Rhodotorula sp.) contain carotenoids of high commercial interest (beta-carotene, others) which are used as natural food colorants and feed additives in aquaculture. The co-extraction of lipids and carotenoids from the yeast biomass, in a biorefinary concept, will allow the economical sustainable biofuel production since the high-value added products (carotenoids) will support the fuel production. Therefore it is crucial to monitor the lipid and carotenoid production when producing these compounds from yeast. If at-line information is available, it is possible to change the process control strategy during the process progress, in order to achieve the maximum productivities by changing the operational conditions (agitation, aeration, medium composition, etc.). Such approach is not possible when using conventional microbiology techniques such as optical density, dry cell weight or colony forming units, currently used for process monitoring. In the present work we used flow Cytometry to at-line monitor the lipid and carotenoid content in some Rhodotorula species. Such approach allows the quick process optimization from bench to pilot scale.
Teresa Lopes da Silva is a Chemical Engineer, done her Ph.D. degree (Biochemical Engineering) from the University of ?vora in 2005. She is a Researcher at the National Laboratory for Energy and Geology (LNEG). She is the head of the Flow Cytometry Group at the Bioenergy Unit/LNEG and leads the Biotechnology Process Group of the Iberian Cytometry Society. She was awarded as a postdoc at the Birmingham University (UK) in 2006. She authored over 30 international peer-review scientific publications.