CRISPR-PCS: An Efficient And Versatile Chromosome Splitting Technology In Saccharomyces Cerevisiae | 80680
ISSN: 2155-952X

Journal of Biotechnology & Biomaterials
Open Access

Like us on:

Our Group organises 3000+ Global Conferenceseries Events every year across USA, Europe & Asia with support from 1000 more scientific Societies and Publishes 700+ Open Access Journals which contains over 50000 eminent personalities, reputed scientists as editorial board members.

Open Access Journals gaining more Readers and Citations
700 Journals and 15,000,000 Readers Each Journal is getting 25,000+ Readers

This Readership is 10 times more when compared to other Subscription Journals (Source: Google Analytics)
Recommended Conferences

6th International Conference on Vaccines and Immunology

Geneva, Switzerland

3rd European Congress on Virology

Geneva, Switzerland
Google Scholar citation report
Citations : 1600

Journal of Biotechnology & Biomaterials received 1600 citations as per Google Scholar report

Indexed In
  • Index Copernicus
  • Google Scholar
  • Sherpa Romeo
  • Open J Gate
  • Genamics JournalSeek
  • Academic Keys
  • ResearchBible
  • China National Knowledge Infrastructure (CNKI)
  • Access to Global Online Research in Agriculture (AGORA)
  • Electronic Journals Library
  • RefSeek
  • Hamdard University
  • OCLC- WorldCat
  • SWB online catalog
  • Virtual Library of Biology (vifabio)
  • Publons
  • Geneva Foundation for Medical Education and Research
  • Euro Pub
Share This Page

CRISPR-PCS: An efficient and versatile chromosome splitting technology in Saccharomyces cerevisiae

19th World Congress on Biotechnology

Saeed Kaboli

Shahid Beheshti University, Iran

ScientificTracks Abstracts: J Biotechnol Biomater

DOI: 10.4172/2155-952X-C1-082

PCR-mediated chromosome splitting (PCS) was developed in the yeast Saccharomyces cerevisiae. It is based on homologous recombination and enables division of a chromosome at any point to form two derived and functional chromosomes. However, because of low homologous recombination activity, PCS is limited to a single site at a time, which makes the splitting of multiple loci laborious and time-consuming. Here we have developed a highly efficient and versatile chromosome engineering technology named CRISPR-PCS that integrates PCS with the novel genome editing CRISPR/Cas9 system. This integration allows PCS to utilize induced double strand breaks to activate homologous recombination. CRISPR-PCS enhances the efficiency of chromosome splitting approximately 200-fold and enables generation of simultaneous multiple chromosome splits. We propose that CRISPR-PCS will be a powerful tool for breeding novel yeast strains with desirable traits for specific industrial applications and for investigating genome function.

Saeed Kaboli has completed his PhD and Postdoctoral degrees in Department of Biotechnology, Osaka University, Japan. Presently, he is a Postdoctoral Researcher in Sciences and Biological Technologies, Shahid Beheshti University, Iran. Also, he is engaged in a project entitled “Development of novel genome engineering technology and its application in bioscience and biotechnology”.