Our Group organises 3000+ Global Conferenceseries Events every year across USA, Europe & Asia with support from 1000 more scientific Societies and Publishes 700+ Open Access Journals which contains over 50000 eminent personalities, reputed scientists as editorial board members.

Open Access Journals gaining more Readers and Citations
700 Journals and 15,000,000 Readers Each Journal is getting 25,000+ Readers

This Readership is 10 times more when compared to other Subscription Journals (Source: Google Analytics)
Google Scholar citation report
Citations : 2154

Journal of Biotechnology & Biomaterials received 2154 citations as per Google Scholar report

Indexed In
  • Index Copernicus
  • Google Scholar
  • Sherpa Romeo
  • Open J Gate
  • Genamics JournalSeek
  • Academic Keys
  • ResearchBible
  • China National Knowledge Infrastructure (CNKI)
  • Access to Global Online Research in Agriculture (AGORA)
  • Electronic Journals Library
  • RefSeek
  • Hamdard University
  • EBSCO A-Z
  • OCLC- WorldCat
  • SWB online catalog
  • Virtual Library of Biology (vifabio)
  • Publons
  • Geneva Foundation for Medical Education and Research
  • Euro Pub
  • ICMJE
Recommended Journals
Share This Page

Genetic engineering of Deinococcus radiodurans for uranium bioremediation from high radiation environment

8th Euro Biotechnology Congress

Shree Kumar Apte

Bhabha Atomic Research Centre, India

ScientificTracks Abstracts: Biotechnol Biomater

DOI: 10.4172/2155-952X.S1.037

Abstract
In nature, uranium occurs over a wide range of concentrations and is generally toxic to all living cells. Exploitation of uranium by the nuclear industry generates acid/alkaline waste, wherein uranium is found at low (<1-2mM) concentration. Removal of even such low concentrations of uranium is desirable for safe disposal of the waste, but is difficult to achieve by physico-chemical methods. Bioremediation, especially bio-precipitation as uranyl phosphate, is an efficient way to remove uranium from such waste, where high levels radiations also prevail. The radio-resistant microbe, Deinococcus radodurans, was genetically manipulated to individually over-express acid and alkaline phosphatases using deinococcal strong promoters, including the radiation-induced Pssb promoter. Lyophilization was successfully employed to preserve both the phosphatase activities and uranium precipitation ability of recombinant cells up to 1 year at ambient temperature. Such cells could remove 7-11 g U/g dry weight of the biomass.
Biography

Shree Kumar Apte, a Former Director of Bio-Science Group, BARC, is currently Emeritus Professor at the Homi Bhabha National Institute, Mumbai, India. His laboratory has extensively studied stress and adaptive responses in bacteria and plants in response to agricultural stresses and ionizing radiation and developed eco-friendly biotechnologies for agricultural and environmental applications. He is an elected fellow of all the national science academies and agriculture academy in India and has over 170 research publications in high impact international journals to his credit.

Email: aptesk@barc.gov.in

Top