Dersleri yüzünden oldukça stresli bir ruh haline sikiş hikayeleri bürünüp özel matematik dersinden önce rahatlayabilmek için amatör pornolar kendisini yatak odasına kapatan genç adam telefonundan porno resimleri açtığı porno filmini keyifle seyir ederek yatağını mobil porno okşar ruh dinlendirici olduğunu iddia ettikleri özel sex resim bir masaj salonunda çalışan genç masör hem sağlık hem de huzur sikiş için gelip masaj yaptıracak olan kadını gördüğünde porn nutku tutulur tüm gün boyu seksi lezbiyenleri sikiş dikizleyerek onları en savunmasız anlarında fotoğraflayan azılı erkek lavaboya geçerek fotoğraflara bakıp koca yarağını keyifle okşamaya başlar

GET THE APP

Isolation Of Low Volumes Of Silicon Nitride Particles From Tissue | 63872
ISSN: 2155-952X

Journal of Biotechnology & Biomaterials
Open Access

Our Group organises 3000+ Global Conferenceseries Events every year across USA, Europe & Asia with support from 1000 more scientific Societies and Publishes 700+ Open Access Journals which contains over 50000 eminent personalities, reputed scientists as editorial board members.

Open Access Journals gaining more Readers and Citations
700 Journals and 15,000,000 Readers Each Journal is getting 25,000+ Readers

This Readership is 10 times more when compared to other Subscription Journals (Source: Google Analytics)
Google Scholar citation report
Citations : 2154

Journal of Biotechnology & Biomaterials received 2154 citations as per Google Scholar report

Indexed In
  • Index Copernicus
  • Google Scholar
  • Sherpa Romeo
  • Open J Gate
  • Genamics JournalSeek
  • Academic Keys
  • ResearchBible
  • China National Knowledge Infrastructure (CNKI)
  • Access to Global Online Research in Agriculture (AGORA)
  • Electronic Journals Library
  • RefSeek
  • Hamdard University
  • EBSCO A-Z
  • OCLC- WorldCat
  • SWB online catalog
  • Virtual Library of Biology (vifabio)
  • Publons
  • Geneva Foundation for Medical Education and Research
  • Euro Pub
  • ICMJE
Recommended Journals
Share This Page

Isolation of low volumes of silicon nitride particles from tissue

2nd Annual Conference and Expo on BIOMATERIALS

Richard M Hall, Jayna Patel, Stacey P Wilshaw and Joanne L Tipper

University of Leeds, UK

Posters & Accepted Abstracts: J Biotechnol Biomater

DOI: 10.4172/2155-952X.C1.074

Abstract
Adverse biological responses to wear debris generated by total hip replacements (THRs) limit the lifetime of such devices. This has led to the development of biocompatible coatings for prostheses. Silicon nitride (SiN) coatings are highly wear resistant and any resultant wear debris is soluble, reducing the possibility of a chronic inflammatory reaction. SiN wear debris produced from coatings has not been characterized in vivo. The aim of this research is to develop a sensitive method for isolating low volumes of SiN wear debris from periprosthetic tissue. Commercial silicon nitride particles of <50 nm (Sigma Aldrich) were incubated with formalin fixed sheep synovium at a volume of 0.01 mm3/g of tissue (n=3). The tissue was digested with papain (1.56 mg/ml) and proteinase K (1 mg/ml) and samples were subjected to density gradient ultracentrifugation using sodium polytungstate (SPT) to remove protein from the particles. Control tissue samples, to which no particles were added, were also subjected to the procedure. Particles were washed to remove residual SPT and filtered onto 15 nm filters. The filtered particles were imaged by scanning electron microscopy and positively identified by elemental analysis before and after the isolation procedure. To validate whether the isolation method affected particle size or morphology, imaging software (imageJ) was used to determine size distributions and morphological parameters of the particles. A Kolmogorov-Smirnov test was used to statistically analyze the data. The particle size distributions of isolated and nonisolated particles were similar. Morphology in terms of roundness and aspect ratio was unchanged by the procedure. Future work aims to test the method on titanium and cobalt chrome wear debris generated by a pin-on-plate wear simulator. The method will then be applied to isolate and characterize particles from in vivo studies of novel SiN coated prostheses in a rabbit and sheep model.
Biography

Richard M Hall is a Member of the University of Leeds with an interest in motion preservation devices as well as research in to spinal cord injury and augmentation procedures such as vertebroplasty. He currently coordinates the LifeLongJoints project and is the Director of Postgraduate Research Studies in Engineering.

Email: r.m.hall@leeds.ac.uk

Top