Our Group organises 3000+ Global Conferenceseries Events every year across USA, Europe & Asia with support from 1000 more scientific Societies and Publishes 700+ Open Access Journals which contains over 50000 eminent personalities, reputed scientists as editorial board members.

Open Access Journals gaining more Readers and Citations
700 Journals and 15,000,000 Readers Each Journal is getting 25,000+ Readers

This Readership is 10 times more when compared to other Subscription Journals (Source: Google Analytics)
Google Scholar citation report
Citations : 2154

Journal of Biotechnology & Biomaterials received 2154 citations as per Google Scholar report

Indexed In
  • Index Copernicus
  • Google Scholar
  • Sherpa Romeo
  • Open J Gate
  • Genamics JournalSeek
  • Academic Keys
  • ResearchBible
  • China National Knowledge Infrastructure (CNKI)
  • Access to Global Online Research in Agriculture (AGORA)
  • Electronic Journals Library
  • RefSeek
  • Hamdard University
  • EBSCO A-Z
  • OCLC- WorldCat
  • SWB online catalog
  • Virtual Library of Biology (vifabio)
  • Publons
  • Geneva Foundation for Medical Education and Research
  • Euro Pub
  • ICMJE
Recommended Journals
Share This Page

Metallic 3D-printing for orthopedic surgery: Question of surface and cell compatibility

2nd Annual Conference and Expo on BIOMATERIALS

Michaela Fousova, Dalibor Vojtech, Eva Jablonska and Jaroslav Fojt

University of Chemistry and Technology, Czech Republic

ScientificTracks Abstracts: J Biotechnol Biomater

DOI: 10.4172/2155-952X.C1.073

Abstract
Metallic 3D printing is gaining more and more attention in these days and is gradually becoming a part of industrial production. A lot of metals and alloys can be processed already and there are more than five methods being intensely studied and improved. Application fields of this technology are very wide as almost any shape and design can be achieved. One of the most important fields is biomedicine. With 3D-printed biocompatible metals of desired shape and structure, bone defects can be successfully treated. Although bone structure with gradient porosity can be mimicked, mechanical properties can be adjusted to meet natural properties of the treated bone and osseointegration can be promoted. There are still some drawbacks needing to be solved. Especially in the case of porous structures, there is a problem of unmelted powder particles (being the material input) adhering to the final surface. These particles are harmful for several reasons. Not only they have a negative impact on mechanical performance (particularly fatigue life) and tribological properties, but they might also loosen into the body and set off an inflammatory reaction. Therefore, for biomaterials, surface quality and properties are of a particular importance. Our work focused on titanium alloy Ti6Al4V and its surface morphology and cell compatibility when prepared by 3D printing technology. Although biocompatibility of this broadly used alloy is well known, the interaction with biological environment may be affected by the 3D printing process. For this purpose, samples prepared by two most frequent metallic 3D printing methods ��? Selective Laser Melting (SLM) and Electron Beam Melting (EBM) were characterized in the as-printed state. Comparison of surface morphology and chemistry has been made. To assess cell compatibility contact in vitro tests were performed.
Biography

Michaela Fousova is a PhD student of Materials Science study program at the University of Chemistry and Technology in Prague, Czech Republic. She focuses on metallic biomaterials research and development. The main subject of her professional interest is 3D printing technology applied in the medical sector. She cooperates with industrial companies producing medical implants and also other research centers dealing with metallic additive manufacturing. She already published several papers on the topic of titanium alloy or stainless steel prepared by selective laser melting technology. Recently, she has also got into touch with electron beam melting technology.

Email: michaela.fousova@vscht.cz

Top