Our Group organises 3000+ Global Conferenceseries Events every year across USA, Europe & Asia with support from 1000 more scientific Societies and Publishes 700+ Open Access Journals which contains over 50000 eminent personalities, reputed scientists as editorial board members.

Open Access Journals gaining more Readers and Citations
700 Journals and 15,000,000 Readers Each Journal is getting 25,000+ Readers

This Readership is 10 times more when compared to other Subscription Journals (Source: Google Analytics)
Google Scholar citation report
Citations : 2154

Journal of Biotechnology & Biomaterials received 2154 citations as per Google Scholar report

Indexed In
  • Index Copernicus
  • Google Scholar
  • Sherpa Romeo
  • Open J Gate
  • Genamics JournalSeek
  • Academic Keys
  • ResearchBible
  • China National Knowledge Infrastructure (CNKI)
  • Access to Global Online Research in Agriculture (AGORA)
  • Electronic Journals Library
  • RefSeek
  • Hamdard University
  • EBSCO A-Z
  • OCLC- WorldCat
  • SWB online catalog
  • Virtual Library of Biology (vifabio)
  • Publons
  • Geneva Foundation for Medical Education and Research
  • Euro Pub
  • ICMJE
Recommended Journals
Share This Page

Molecular cloning and characterization of the small heat shock protein family in the spruce budworm, Choristoneura fumiferana

17th EURO BIOTECHNOLOGY CONGRESS

Guoxing Quan

Great Lakes Forestry Centre, Canada

ScientificTracks Abstracts: J Biotechnol Biomater

DOI: 10.4172/2155-952X-C1-076

Abstract
Small heat shock proteins are a superfamily of molecular chaperones and are characterized by the presence of a conserved �?±-crystallin domain. They exhibit ATP-independent chaperone-like activity by assisting in the correct folding of nascent and stress-accumulated misfolded protein to prevent irreversible protein aggregation. Unlike HSPs of large molecular weight, the sHSPs display structural and functional diversity among different insect species. Some sHSPs may contribute to stress tolerance, enhancing insect survival in severe environmental conditions. As such, studying SHSPs may lead to a better understanding of how pest insect survives in unfavorable environments and how the changing climate affects their distribution and outbreaks. The spruce budworm, C. fumiferana is a destructive native forest defoliator in North America. In the past few hundred years, periodic outbreaks are known to have occurred across tens of millions of square kilometers of forest. Here, we report the identification of 15 sHSP genes from the spruce budworm transcriptome. Examination of the mRNA expression profiles of the sHSPs revealed that the levels varied according to the developmental stage and tissue as well as whether the insects were reared under normal and stress conditions. Nine sHSP genes were sensitive to heat shock stress. Some, but not all, sHSPs may play a vital role during diapause.
Biography

Guoxing Quan received his PhD degree in 1998 from Tokyo University of Agriculture and Technology, Japan. He worked as a Postdoctoral Fellow in Japan and Canada for several years. Currently, he is a Research Scientist working at Great Lakes Forestry Centre, Sault Ste. Marie, Ontario. He has published more than 20 papers and been a reviewer for many scientific journals. He has worked on transgenic silkworm, RNAi and owns three patents. His current research focuses on the identification of genes involved in adapting to unfavorable environmental conditions and how the changing climate affects insect distribution and outbreaks.

Top