Our Group organises 3000+ Global Conferenceseries Events every year across USA, Europe & Asia with support from 1000 more scientific Societies and Publishes 700+ Open Access Journals which contains over 50000 eminent personalities, reputed scientists as editorial board members.

Open Access Journals gaining more Readers and Citations
700 Journals and 15,000,000 Readers Each Journal is getting 25,000+ Readers

This Readership is 10 times more when compared to other Subscription Journals (Source: Google Analytics)
Google Scholar citation report
Citations : 2154

Journal of Biotechnology & Biomaterials received 2154 citations as per Google Scholar report

Indexed In
  • Index Copernicus
  • Google Scholar
  • Sherpa Romeo
  • Open J Gate
  • Genamics JournalSeek
  • Academic Keys
  • ResearchBible
  • China National Knowledge Infrastructure (CNKI)
  • Access to Global Online Research in Agriculture (AGORA)
  • Electronic Journals Library
  • RefSeek
  • Hamdard University
  • EBSCO A-Z
  • OCLC- WorldCat
  • SWB online catalog
  • Virtual Library of Biology (vifabio)
  • Publons
  • Geneva Foundation for Medical Education and Research
  • Euro Pub
  • ICMJE
Recommended Journals
Share This Page

Potential human glioblastoma cancer markers identified with nanobody-based reverse proteomic approach

10th Asia-Pacific Biotech Congress

Radovan Komel

University of Ljubljana, Slovenia

Keynote: J Biotechnol Biomater

DOI: 10.4172/2155-952X.C1.054

Abstract
Glioblastoma multiforme (GBM) is a highly lethal form of cancer where the standard therapies of surgery followed by radiation and chemotherapy cannot significantly prolong the life expectancy of the patients. Tumor recurrence shows even more aggressive form compared to the primary tumors and cancer stem cells, resistant to conventional therapy, seem responsible for early relapse. There is a lack of GBM and GBM stem cell biomarkers specific enough to provide early diagnosis of the disease and efficient targeting therapy. The discovery of heavy-chain only antibodies (HCAbs) in camelids appears to have opened a new opportunity of searching for cancer markers and developing targeted treatment approaches. HCAb-derived nanobodies (Nbs) are small and stable single-domain antigen-binding fragments with a high degree of sequence identity to the human heavy chain variable domain which offer them advantages over classical antibodies. We immunized an alpaca with a human GBM stem-like cell line prepared from primary GBM cultures. A nanobody library was constructed in a phage display vector and using phage display technology, we selected specific GBM stem-like cell binders through a number of affinity selections. The selected nanobody clones were recloned, expressed in E. coli and purified by IMAC and size-exclusion chromatography. Specific nanobody-antigen pairs were obtained and MS analysis revealed ten proteins that were up-regulated in the GBM stem-like cells compared to the controls. Following application of Nb234 (anti-TRIM28) and Nb206 (anti-TufM) on different cell lines, variable distribution of TufM during the cell cycle and much higher toxic effect of both Nbs was observed on GBM compared to the control.
Biography

Radovan Komel is a Professor of Biochemistry and Molecular Biology at the Faculty of Medicine, University of Ljubljana. He pioneered gene technology and initiated medical molecular genetics in Slovenia. As a Founder and Head of the Medical Centre for Molecular Biology, he is coordinating national research program Functional Genomics and Biotechnology for Health. He has published more than 150 papers in reputed journals and has supervised 65 PhD/MSc theses. He is also a President of Slovenian Society for Natural Sciences, Editor of Proteus, a popular science journal and a Member of Editorial Board of Acta Chimica Slovenica. Presently he is Coordinating elaboration of Slovenian legislation concerning biomedicine and human genome.

Email: komel@mf.uni-lj.si

Top