alexa
Reach Us +1(850)754-6199
Strategies For Reducing Acetate Formation During Salmonella Typhimurium LT2 Cultures | 50004
ISSN: 2155-952X

Journal of Biotechnology & Biomaterials
Open Access

Like us on:

Our Group organises 3000+ Global Conferenceseries Events every year across USA, Europe & Asia with support from 1000 more scientific Societies and Publishes 700+ Open Access Journals which contains over 50000 eminent personalities, reputed scientists as editorial board members.

Open Access Journals gaining more Readers and Citations
700 Journals and 15,000,000 Readers Each Journal is getting 25,000+ Readers

This Readership is 10 times more when compared to other Subscription Journals (Source: Google Analytics)

Strategies for reducing acetate formation during Salmonella typhimurium LT2 cultures

Biotechnology World Convention

Jose Roberto Fuzer Neto, Raquel Paulini Miranda, Teresa Cristina Zangirolami and Adilson Jose da Silva

Federal University of Sao Carlos, Brazil

Posters & Accepted Abstracts: J Biotechnol Biomater

DOI: 10.4172/2155-952X.C1.059

Abstract
In recent years, the application of attenuated strains of Salmonella spp. has been widely investigated for the development of various biotechnological products, especially vaccines. However, the industrial production of these compounds is hampered by metabolic constraints presented by Salmonella cells, which naturally produce high amounts of growth inhibitor metabolites, mainly acetate. To deal with this problem, two different approaches were evaluated in the present work: Changing culture conditions (carbon source evaluation) and implementing genetic modifications (enhancement of cell’s acetate scavenging capabilities by overexpression of acetyl-CoA synthetase (ACS)). Wild type and recombinant cells were cultured in minimal medium with glucose or glycerol as carbon source in Erlenmeyer flasks agitated at 200 rpm and 37 oC. Samples were collected during cultivation and analyzed by HPLC to quantify organic acids production and the carbon source consumption. Cellular growth was assessed by optical density readings (OD 600 nm) of the culture broth. The results showed that the carbon source plays an important role on byproducts excretion by S. typhimurium cells, indicating that for both strains acetate production is greatly reduced using glycerol. The overexpression of ACS also reduced the acetate accumulation as this enzyme acted assimilating the excreted acetate. From all the conditions studied, the best results were obtained by the recombinant cells cultured in glycerol. An increase of 40% of biomass production was achieved, while the acetate accumulation was reduced by more than 50% in comparison to the average values registered in the other experiments.
Biography

Jose Roberto Fuzer Neto has completed his graduation in Chemical Engineering from Federal University of São Carlos and he is currently a Master’s student at Federal University of São Carlos.

Email: [email protected]

Top