alexa

GET THE APP

The Fabrication Of DNA Nanostructures And Their Applications In Bionanotechnology | 28399
ISSN: 2155-952X

Journal of Biotechnology & Biomaterials
Open Access

Like us on:

Our Group organises 3000+ Global Conferenceseries Events every year across USA, Europe & Asia with support from 1000 more scientific Societies and Publishes 700+ Open Access Journals which contains over 50000 eminent personalities, reputed scientists as editorial board members.

Open Access Journals gaining more Readers and Citations
700 Journals and 15,000,000 Readers Each Journal is getting 25,000+ Readers

This Readership is 10 times more when compared to other Subscription Journals (Source: Google Analytics)
Recommended Conferences

2nd International Conference on Biotechnology and Healthcare

Auckland, New Zealand
Google scholar citation report
Citations : 1536

Journal of Biotechnology & Biomaterials received 1536 citations as per google scholar report

Indexed In
  • Index Copernicus
  • Google Scholar
  • Sherpa Romeo
  • Open J Gate
  • Genamics JournalSeek
  • Academic Keys
  • ResearchBible
  • China National Knowledge Infrastructure (CNKI)
  • Access to Global Online Research in Agriculture (AGORA)
  • Electronic Journals Library
  • RefSeek
  • Hamdard University
  • EBSCO A-Z
  • OCLC- WorldCat
  • SWB online catalog
  • Virtual Library of Biology (vifabio)
  • Publons
  • Geneva Foundation for Medical Education and Research
  • Euro Pub
Share This Page

The fabrication of DNA nanostructures and their applications in bionanotechnology

7th Asia-Pacific Biotech Congress

Risheng Wang

ScientificTracks Abstracts: J Biotechnol Biomater

DOI: 10.4172/2155-952X.S1.031

Abstract
Deoxyribonucleic acid (DNA), as you may very well know, is the carrier of generic information in living cells, which can replicate itself through Watson-Crick base paring. However, over the past three decades, researchers in the emerging field of DNA nanotechnology have been using the DNA as structural nanomaterials, based on its unique molecular recognition properties and structural features, to build addressable artificial nanostructures in one, two and three dimensions. These selfassembled nanostructures have been used to precisely organize functional components into deliberately designed patterns which have a wide application potential in material science, biomedical, electronic and environmental fields. The development of DNA nanotechnology and its potential application will be covered. Then this talk will discuss the design and construction of several DNA nanostructures, including self-assembly of DNA six-helix nanotubes from two half-tube components; Using DNA origami template to organize semiconducting quantum dots (QDs) and gold nanoparticles (AuNPs) and discussing the methods to integrate ?top-down? nanofabrication technique with ?bottom-up? self-assembly.
Biography
Risheng Wang has completed her PhD in 2010 from New York University. She then joined as Postdoctoral research associate, the Department of Chemistry and Applied Physics and Applied Mathematics (APAM) at Columbia University. After which she became an Assistant Professor at Chemistry department of Missouri University of Science and Technology. She has published a series of papers in reputed journals.
Top