alexa
Reach Us +1(850)754-6199
Unraveling Origin Of Spectral Tuning In Phytochrome Photoreceptor Proteins Enables Rational Design Of The Near-infrared Absorbing Molecular Tools | 98935
ISSN: 2155-952X

Journal of Biotechnology & Biomaterials
Open Access

Like us on:

OMICS International organises 3000+ Global Conferenceseries Events every year across USA, Europe & Asia with support from 1000 more scientific Societies and Publishes 700+ Open Access Journals which contains over 50000 eminent personalities, reputed scientists as editorial board members.

Open Access Journals gaining more Readers and Citations
700 Journals and 15,000,000 Readers Each Journal is getting 25,000+ Readers

This Readership is 10 times more when compared to other Subscription Journals (Source: Google Analytics)
All submissions of the EM system will be redirected to Online Manuscript Submission System. Authors are requested to submit articles directly to Online Manuscript Submission System of respective journal.

Unraveling origin of spectral tuning in phytochrome photoreceptor proteins enables rational design of the near-infrared absorbing molecular tools

4th International Conference on Advances in Biotechnology and Bioscience

Egle Maximowitsch and Tatiana Domratcheva

Max Planck Institute for Medical Research, Germany

ScientificTracks Abstracts: J Biotechnol Biomater

DOI: 10.4172/2155-952X-C6-103

Abstract
Near-infrared absorbing molecular tools are in high demand for in vivo imaging and control of biological processes. Such tools can be engineered on the basis of phytochrome photoreceptor proteins which play a central role in red/far-red light reception in various organisms. Phytochromes can photoswitch between two thermally stable red-absorbing (Pr) and farred- absorbing (Pfr) forms, although the molecular mechanism inducing the spectral tuning in phytochromes was unknown yet. We performed computational studies and identified molecular origin of the red spectral shift in the Pfr state. Quantumchemical calculations demonstrated that interactions between the ring D of the tetrapyrrole chromophore and conserved aspartate lead to a change in the tetrapyrrole electronic structure, which translates to the red shift of the absorption maximum. The MD simulations demonstrated that these interactions can form only after other structural changes take place in the protein ensuring a coupling of the phytochrome spectral and conformational switching. Our study provides understanding of how hydrogen bonding controls phytochrome optical properties and enables rational design of phytochromes and other tetrapyrrole binding proteins as optogenetic tools and fluorescent proteins operating in the far-red spectral region.
Biography

Egle Maximowitsch has completed her Bachelor’s Degree in Biochemistry at Vilnius University, Lithuania in 2013 and Master’s Degree in Molecular Biosciences at Heidelberg University, Germany in 2015. Since 2015, she is a PhD student in Computational Photobiology at Max Planck Institute for Medical Research in Heidelberg, Germany.

E-mail: [email protected]

 

Top