alexa

GET THE APP

Dersleri yüzünden oldukça stresli bir ruh haline sikiş hikayeleri bürünüp özel matematik dersinden önce rahatlayabilmek için amatör pornolar kendisini yatak odasına kapatan genç adam telefonundan porno resimleri açtığı porno filmini keyifle seyir ederek yatağını mobil porno okşar ruh dinlendirici olduğunu iddia ettikleri özel sex resim bir masaj salonunda çalışan genç masör hem sağlık hem de huzur sikiş için gelip masaj yaptıracak olan kadını gördüğünde porn nutku tutulur tüm gün boyu seksi lezbiyenleri sikiş dikizleyerek onları en savunmasız anlarında fotoğraflayan azılı erkek lavaboya geçerek fotoğraflara bakıp koca yarağını keyifle okşamaya başlar
Modification of Carbon Nanotubes with Electronegativity Molecules to Control the Adhesion of Low Density Lipoprotein | OMICS International | Abstract
ISSN: 2168-9652

Biochemistry & Physiology: Open Access
Open Access

Our Group organises 3000+ Global Conferenceseries Events every year across USA, Europe & Asia with support from 1000 more scientific Societies and Publishes 700+ Open Access Journals which contains over 50000 eminent personalities, reputed scientists as editorial board members.

Open Access Journals gaining more Readers and Citations
700 Journals and 15,000,000 Readers Each Journal is getting 25,000+ Readers

This Readership is 10 times more when compared to other Subscription Journals (Source: Google Analytics)

Research Article

Modification of Carbon Nanotubes with Electronegativity Molecules to Control the Adhesion of Low Density Lipoprotein

Juan Esteban Berrio Sierra1*, Jesús Antonio Carlos Cornelio2, Alejandra García García3, John Bustamante Osorno1 and Lina Marcela Hoyos Palacio1

1Universidad Pontificia Bolivariana, Facultad de Ingenierías, Escuela de Ciencias de la Salud, Grupo de Investigación de Dinámica Cardiovascular, Medellín, Colombia

2Facultad de Ingeniería Química, Universidad Michoacana de San Nicolás de Hidalgo, Morelia, México

3Centro de Investigación en Materiales Avanzados, CIMAV. Alianza Norte 202, Parque de Investigación e Innovación Tecnológica. Apodaca, Nuevo León, México CP 66600

*Corresponding Author:
Juan Esteban Berrio Sierra
Centro de Investigación en Materiales Avanzados, CIMAV. Alianza Norte 202
Parque de Investigación e Innovación Tecnológica. Apodaca, Nuevo León, México CP 66600
Tel: +573163908910
E-mail: [email protected]

Received date: March 28, 2016; Accepted date: April 27, 2016; Published date: May 05, 2016

Citation: Sierra JEB, Cornelio JAC, García AG, Osorno JB, Palacio LMH (2016) Modification of Carbon Nanotubes with Electronegativity Molecules to Control the Adhesion of Low Density Lipoprotein. Biochem Physiol 5:203. doi:10.4172/2168-9652.1000203

Copyright: © 2016 Sierra JEB, et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Abstract

Atherosclerosis is a cardiovascular disease that causes accumulation of lipoproteins, which leads to vascular injury and may even cause Acute Myocardial Infarction (AMI). The interaction of vascular endothelium with low - density lipoproteins (LDL) was modified by using two distinct groups of carbon nanotubes (CNTs). The first group was doped with aluminum sulfate (Al2(SO4)3) and boric acid (H3BO3), and the second group was functionalized by chemical route with carboxylic acid (COOH) and glucosamine (C6H13NO5). The catalysts used to grow the CNTs were Nickel (Ni) 50%, Cobalt (Co) 50% and Cobalt Iron (Fe - Co) 10% - 40%, by sol - gel route. Scanning electron microscopy (SEM), Raman, and contact angle were used to characterize CNTs. The Raman spectra of multi - wall carbon nanotubes showed three bands, which are called D (disorder), G (graphitization) and G’ (second harmonic order) which caused by the D band. It is observed that the intensity ratio ID / IG increases for functionalized CNTs. CNTs grown from nickel and functionalized by chemical route with glucosamine showed low wettability contact angle for the 2h and 18h oxidized LDL samples. CNTs grown from nickel and doped with aluminum sulfate showed an angle of contact with low wettability for the 2h oxidized LDL sample. An association of the sulphate groups in the density of the load and the cooperativity of the load with arginine and lysine rich peptides of the LDL sample were observed. The CNT catalyzed with (Fe - Co) and doped with boric acid evidenced a low strength of adhesion and greater surface tension for the 18h high degree oxidized LDL; resulting in a repulsion of residues of lysine and arginine of the altered structure of ApoB 100 of the LDL. The obtained CNT structures are presented as a possible devise coating with therapeutic potencial to avoid the progression of atherosclerosis.

Keywords

Google Scholar citation report
Citations : 814

Biochemistry & Physiology: Open Access received 814 citations as per Google Scholar report

Indexed In
  • CAS Source Index (CASSI)
  • Index Copernicus
  • Google Scholar
  • Sherpa Romeo
  • Open J Gate
  • Genamics JournalSeek
  • Academic Keys
  • JournalTOCs
  • Ulrich's Periodicals Directory
  • Electronic Journals Library
  • RefSeek
  • Hamdard University
  • EBSCO A-Z
  • OCLC- WorldCat
  • Scholarsteer
  • SWB online catalog
  • Virtual Library of Biology (vifabio)
  • Publons
  • Euro Pub
Share This Page
Top