alexa Abstract | Modification of Carbon Nanotubes with Electronegativity Molecules to Control the Adhesion of Low Density Lipoprotein
ISSN: 2168-9652

Biochemistry & Physiology: Open Access
Open Access

OMICS International organises 3000+ Global Conferenceseries Events every year across USA, Europe & Asia with support from 1000 more scientific Societies and Publishes 700+ Open Access Journals which contains over 50000 eminent personalities, reputed scientists as editorial board members.

Open Access Journals gaining more Readers and Citations

700 Journals and 15,000,000 Readers Each Journal is getting 25,000+ Readers

This Readership is 10 times more when compared to other Subscription Journals (Source: Google Analytics)

Research Article Open Access


Atherosclerosis is a cardiovascular disease that causes accumulation of lipoproteins, which leads to vascular injury and may even cause Acute Myocardial Infarction (AMI). The interaction of vascular endothelium with low - density lipoproteins (LDL) was modified by using two distinct groups of carbon nanotubes (CNTs). The first group was doped with aluminum sulfate (Al2(SO4)3) and boric acid (H3BO3), and the second group was functionalized by chemical route with carboxylic acid (COOH) and glucosamine (C6H13NO5). The catalysts used to grow the CNTs were Nickel (Ni) 50%, Cobalt (Co) 50% and Cobalt Iron (Fe - Co) 10% - 40%, by sol - gel route. Scanning electron microscopy (SEM), Raman, and contact angle were used to characterize CNTs. The Raman spectra of multi - wall carbon nanotubes showed three bands, which are called D (disorder), G (graphitization) and G’ (second harmonic order) which caused by the D band. It is observed that the intensity ratio ID / IG increases for functionalized CNTs. CNTs grown from nickel and functionalized by chemical route with glucosamine showed low wettability contact angle for the 2h and 18h oxidized LDL samples. CNTs grown from nickel and doped with aluminum sulfate showed an angle of contact with low wettability for the 2h oxidized LDL sample. An association of the sulphate groups in the density of the load and the cooperativity of the load with arginine and lysine rich peptides of the LDL sample were observed. The CNT catalyzed with (Fe - Co) and doped with boric acid evidenced a low strength of adhesion and greater surface tension for the 18h high degree oxidized LDL; resulting in a repulsion of residues of lysine and arginine of the altered structure of ApoB 100 of the LDL. The obtained CNT structures are presented as a possible devise coating with therapeutic potencial to avoid the progression of atherosclerosis.

To read the full article Peer-reviewed Article PDF image | Peer-reviewed Full Article image

Author(s): Juan Esteban Berrio Sierra, Jesús Antonio Carlos Cornelio, Alejandra García García, John Bustamante Osorno and Lina Marcela Hoyos Palacio


Carbon nanotube, Low - density lipoproteins (LDL), Functionalization, Electronegativity molecules, Carbon nanotube, Low - density lipoproteins (LDL), Functionalization, Electronegativity molecules

Share This Page

Additional Info

Loading Please wait..
Peer Reviewed Journals
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version