Microinflammation as a Candidate for Diabetic Nephropathy | OMICS International | Abstract
ISSN: 2381-8727

International Journal of Inflammation, Cancer and Integrative Therapy
Open Access

Our Group organises 3000+ Global Conferenceseries Events every year across USA, Europe & Asia with support from 1000 more scientific Societies and Publishes 700+ Open Access Journals which contains over 50000 eminent personalities, reputed scientists as editorial board members.

Open Access Journals gaining more Readers and Citations
700 Journals and 15,000,000 Readers Each Journal is getting 25,000+ Readers

This Readership is 10 times more when compared to other Subscription Journals (Source: Google Analytics)

Review Article

Microinflammation as a Candidate for Diabetic Nephropathy

Amal Abd El hafez*

Pathology Department, Faculty of Medicine, Mansoura University, Egypt

*Corresponding Author:
Dr. Amal Abd El hafez
Sultan Bin Abdulaziz Humanitarian City
Riyadh, 11536, P.O. box 64399, Kingdom of Saudi Arabia
Tel: +966557662665
E-mail: [email protected]

Received date: May 30, 2014; Accepted date: June 05, 2014; Published date: June 07, 2014

Citation: El hafez AA (2014) Microinflammation as a Candidate for Diabetic Nephropathy. Microinflammation 1:101. doi: 10.4172/2381-8727.1000101

Copyright: © 2014 El hafez AA. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.


Diabetic Nephropathy (DN) is a major cause of mortality in patients with Type 1 and 2 diabetes throughout the world. This review draws attention to the important role of microinflammation and the complex pathways implicated in the development and progression of DN. These pathways include the collaboration of metabolic, hemodynamic and hormonal factors with oxidative stress in patients with genetic susceptibility to create an inflammatory milieu. The key role of inflammatory cells in the kidney, particularly infiltrating macrophages and T-lymphocytes is highlighted. The major inflammatory cytokines and chemokines, receptors, adhesion molecules as well as transcription factors and transduction pathways involved in the pathogenesis of DN are also discussed. Understanding of these inflammatory pathways guides important therapeutic appliances and improves the discovery of new therapeutic targets that can be translated into clinical treatments for DN.