Our Group organises 3000+ Global Conferenceseries Events every year across USA, Europe & Asia with support from 1000 more scientific Societies and Publishes 700+ Open Access Journals which contains over 50000 eminent personalities, reputed scientists as editorial board members.

Open Access Journals gaining more Readers and Citations
700 Journals and 15,000,000 Readers Each Journal is getting 25,000+ Readers

This Readership is 10 times more when compared to other Subscription Journals (Source: Google Analytics)
Google Scholar citation report
Citations : 5125

Journal of Earth Science & Climatic Change received 5125 citations as per Google Scholar report

Journal of Earth Science & Climatic Change peer review process verified at publons
Indexed In
  • CAS Source Index (CASSI)
  • Index Copernicus
  • Google Scholar
  • Sherpa Romeo
  • Online Access to Research in the Environment (OARE)
  • Open J Gate
  • Genamics JournalSeek
  • JournalTOCs
  • Ulrich's Periodicals Directory
  • Access to Global Online Research in Agriculture (AGORA)
  • Centre for Agriculture and Biosciences International (CABI)
  • RefSeek
  • Hamdard University
  • EBSCO A-Z
  • OCLC- WorldCat
  • Proquest Summons
  • SWB online catalog
  • Publons
  • Euro Pub
  • ICMJE
Share This Page

Forest resilience to warming climate

4th World Conference on CLIMATE CHANGE

Chuixiang Yi

Queens College of City University of New York, USA

Keynote: J Earth Sci Clim Change

DOI: 10.4172/2157-7617-C1-035

Abstract
Forests provide a profound service in partially balancing the global carbon budget, sequestering about one quarter of anthropogenic emissions (2.4 GT C per year). However, many forests are subject to growing stress due to climate change, with drought-induced tree mortality likely increasing globally. Here, I review recent progresses in understanding: (1) how forest resilience responds to on-going climate change? (2) how can we quantify forest resilience and tipping point? And (3) what is the future of forests with on-going climate change?
Biography

Chuixiang Yi is a Micrometeorologist and Theoretical Modeler working on issues of how climate change, affects the carbon cycle, and from that knowledge try to predict environmental changes in the future. Their early results show that temperature is the most important control on carbon flow in high latitudes, while water is the most important control for carbon movement in low latitudes. As a result of global warming effects during the 21st century, we predict that carbon flow from the atmosphere into ecosystems will be strengthened in high latitudes, while being weakened in low latitudes.

Relevant Topics
Top