Our Group organises 3000+ Global Conferenceseries Events every year across USA, Europe & Asia with support from 1000 more scientific Societies and Publishes 700+ Open Access Journals which contains over 50000 eminent personalities, reputed scientists as editorial board members.

Open Access Journals gaining more Readers and Citations
700 Journals and 15,000,000 Readers Each Journal is getting 25,000+ Readers

This Readership is 10 times more when compared to other Subscription Journals (Source: Google Analytics)
Google Scholar citation report
Citations : 5125

Journal of Earth Science & Climatic Change received 5125 citations as per Google Scholar report

Journal of Earth Science & Climatic Change peer review process verified at publons
Indexed In
  • CAS Source Index (CASSI)
  • Index Copernicus
  • Google Scholar
  • Sherpa Romeo
  • Online Access to Research in the Environment (OARE)
  • Open J Gate
  • Genamics JournalSeek
  • JournalTOCs
  • Ulrich's Periodicals Directory
  • Access to Global Online Research in Agriculture (AGORA)
  • Centre for Agriculture and Biosciences International (CABI)
  • RefSeek
  • Hamdard University
  • EBSCO A-Z
  • OCLC- WorldCat
  • Proquest Summons
  • SWB online catalog
  • Publons
  • Euro Pub
  • ICMJE
Share This Page

Geotectonics and structures of the Arabian Peninsula

2nd International Conference on Geology

Abdullah M S Al-Amri

King Saud University, Saudi Arabia

Posters & Accepted Abstracts: J Earth Sci Clim Change

DOI: 10.4172/2157-7617.C1.022

Abstract
Arabian Peninsula is an area, which is characterized by poor seismic activities. While for the Arabian Shield and Arabian Platform are aseismic, the area is ringed with regional seismic sources in the tectonically active areas of Iran and Turkey to the northeast, the Red Sea Rift bordering the Shield to the southwest, and the Dead Sea Transform fault zone to the north. Red Sea is considered one of the few places in the world undergoing active continental rifting and formation of new oceanic lithosphere. We determined the seismic velocity structure of the crust and upper mantle of the Arabian Shield and Red Sea using a variety of analysis techniques on broadband seismic waveform data recorded by KACST and SGS seismographic networks. Teleseismic P- and S-wave travel time tomography provided an image of upper mantle compressional and shear velocities related to thermal variations. Regional Pn tomography delineated compressional velocity structure of the shallow mantle. Modeling of teleseismic P-wave receiver functions estimated crustal and upper mantle discontinuity structure. Finally, measurements of teleseismic shear-wave splitting estimated upper mantle anisotropy. Generally speaking, new results for the lithosphere suggest that the mantle lithosphere is thin and the LVZ is significant near the Red Sea, where rifting is active. The mantle lid thickens away from the Red Sea in the Arabian interior. Furthermore our results indicate the presence of polarization anisotropy in the lithospheric upper mantle, in the vicinity, as well as farther away from the Red Sea. Our modeling suggests vSV>vSH in the southern part of the Red Sea, consistent with vertical flow, and vSH>vSV in the northern part of the Red Sea and the continental interior, as is commonly reported in the continents. We would suggest that low velocity beneath the Gulf of Aqabah and southern Arabian Shield and Red Sea at depths below 200 km are related to mantle upwelling and seafloor spreading. Low velocities beneath the northern Arabian Shield below 200 km may be related to volcanism. The low velocity feature near the eastern edge of the Arabian Shield and western edge of the Arabian Platform could be related to mantle flow effects near the interface of lithosphere of different thickness.
Biography

Email: amsamri@ksu.edu.sa

Relevant Topics
Top