Our Group organises 3000+ Global Conferenceseries Events every year across USA, Europe & Asia with support from 1000 more scientific Societies and Publishes 700+ Open Access Journals which contains over 50000 eminent personalities, reputed scientists as editorial board members.

Open Access Journals gaining more Readers and Citations
700 Journals and 15,000,000 Readers Each Journal is getting 25,000+ Readers

This Readership is 10 times more when compared to other Subscription Journals (Source: Google Analytics)
Google Scholar citation report
Citations : 5125

Journal of Earth Science & Climatic Change received 5125 citations as per Google Scholar report

Journal of Earth Science & Climatic Change peer review process verified at publons
Indexed In
  • CAS Source Index (CASSI)
  • Index Copernicus
  • Google Scholar
  • Sherpa Romeo
  • Online Access to Research in the Environment (OARE)
  • Open J Gate
  • Genamics JournalSeek
  • JournalTOCs
  • Ulrich's Periodicals Directory
  • Access to Global Online Research in Agriculture (AGORA)
  • Centre for Agriculture and Biosciences International (CABI)
  • RefSeek
  • Hamdard University
  • EBSCO A-Z
  • OCLC- WorldCat
  • Proquest Summons
  • SWB online catalog
  • Publons
  • Euro Pub
  • ICMJE
Share This Page

Intensification of extreme precipitation - ancient archives predict the future?

4th International Conference on Earth Science & Climate Change

Piret Plink-Björklund

ScientificTracks Abstracts: J Earth Sci Clim Change

DOI: 10.4172/2157-7617.S1.018

Abstract
Changes in the frequency or intensity of extreme weather and climate events have profound impact on both human society and the natural environment. Rising concentrations of greenhouse gases may already be influencing the intensity of rainfall. Yet, such extreme weather events remain ambiguous to predict, or even determine whether linked to global warming or shortterm variability, showing that these climate processes and their drivers are not yet well understood. Extreme precipitation events, where most of the average annual precipitation falls during a few high-intensity events, are in current climate conditions most frequent in the monsoonal and the bordering subtropical zones, linked to the seasonal migration of the Inter-Tropical Convergence Zone. A recent review of modern and ancient monsoonal and subtropical river systems shows that such rivers display distinct sedimentary characteristics as a function of frequent extreme precipitation induced high-magnitude floods. More than 80% of water discharge and almost 100% of sediment loadis transmitted during such events, as only the flood discharge is the efficient discharge, able to transport sediment. As a result such river deposits are an archive of high-magnitude floods and thus an archive of extreme precipitation events that induced the floods. Analyses of river deposits from some past greenhouse climates indicate long-term intensification of extreme precipitation and poleward expansion of monsoon-like precipitation patterns. These data suggest Hadley Cell expansion as a response to global warming, and support the hypothesis that current intensification of extreme precipitation is indeed linked to the anthropogenic global warming.
Biography
Piret Plink-Björklund has completed her PhD from Göteborg University and Postdoctoral studies from University of Wyoming. She is Associate Professor at Colorado School of Mines and leads a research group of 10 PhD students focusing on precipitation signatures of past greenhouse climates and morphodynamics of sedimentary systems. She has published more than 35 papers in reputed journals, and has presented invited talks at numerous Universities, industries and international conferences.
Relevant Topics
Top