Dersleri yüzünden oldukça stresli bir ruh haline sikiş hikayeleri bürünüp özel matematik dersinden önce rahatlayabilmek için amatör pornolar kendisini yatak odasına kapatan genç adam telefonundan porno resimleri açtığı porno filmini keyifle seyir ederek yatağını mobil porno okşar ruh dinlendirici olduğunu iddia ettikleri özel sex resim bir masaj salonunda çalışan genç masör hem sağlık hem de huzur sikiş için gelip masaj yaptıracak olan kadını gördüğünde porn nutku tutulur tüm gün boyu seksi lezbiyenleri sikiş dikizleyerek onları en savunmasız anlarında fotoğraflayan azılı erkek lavaboya geçerek fotoğraflara bakıp koca yarağını keyifle okşamaya başlar

GET THE APP

Mathematical Model To Calculate The Sensitivity Of Anthropogenic CO2 On Global Earth Temperature | 76310
ISSN: 2157-7617

Journal of Earth Science & Climatic Change
Open Access

Our Group organises 3000+ Global Conferenceseries Events every year across USA, Europe & Asia with support from 1000 more scientific Societies and Publishes 700+ Open Access Journals which contains over 50000 eminent personalities, reputed scientists as editorial board members.

Open Access Journals gaining more Readers and Citations
700 Journals and 15,000,000 Readers Each Journal is getting 25,000+ Readers

This Readership is 10 times more when compared to other Subscription Journals (Source: Google Analytics)
Google Scholar citation report
Citations : 5125

Journal of Earth Science & Climatic Change received 5125 citations as per Google Scholar report

Journal of Earth Science & Climatic Change peer review process verified at publons
Indexed In
  • CAS Source Index (CASSI)
  • Index Copernicus
  • Google Scholar
  • Sherpa Romeo
  • Online Access to Research in the Environment (OARE)
  • Open J Gate
  • Genamics JournalSeek
  • JournalTOCs
  • Ulrich's Periodicals Directory
  • Access to Global Online Research in Agriculture (AGORA)
  • Centre for Agriculture and Biosciences International (CABI)
  • RefSeek
  • Hamdard University
  • EBSCO A-Z
  • OCLC- WorldCat
  • Proquest Summons
  • SWB online catalog
  • Publons
  • Euro Pub
  • ICMJE
Share This Page

Mathematical model to calculate the sensitivity of anthropogenic CO2 on global earth temperature

4th World Conference on CLIMATE CHANGE

Tino Redemann, Eckehard Specht and Roman Weber

Otto von Guericke University Magdeburg, Germany Clausthal University of Technology, Germany

ScientificTracks Abstracts: J Earth Sci Clim Change

DOI: 10.4172/2157-7617-C1-036

Abstract
There are countless climate models, which predict the impacts of the anthropogenic CO2 emissions on the global earth temperature. Because of the large number of influencing parameters used, these models are mostly very complex, so the influences of the particular parameter can hardly be comprehended, i.e. the CO2 concentration in the atmosphere. Due to this fact, the greenhouse effect is described with simple analytical resolvable equations. Therefore, a simplified uniform surface temperature of the earth is assumed. The radiation exchange between earth, clouds, space and the layers of gas between is calculated with these equations, which were developed for the analogue radiation exchange in industrial furnaces. With this model, the temperature profile in the atmosphere can be described relatively well. The CO2 in the atmosphere acts as a radiation shield, which increases the heat resistance against the outgoing long-wave radiation from the earth surface. The known average temperature of the Earth was used to validate this model. When the CO2 in the atmosphere is doubled, the absorptivity increases slightly. Because of this increase, the temperature of the earth surface has to increase about 0.4 Kelvin to compensate the increased heat transport resistance. Since 1860, the Earth's temperature has already risen due to anthropogenic CO2 emissions by 0.2 Kelvin. The measured increase of about 0.9 Kelvin is attributed to side effects caused by the CO2 related temperature increase. Therefore, a temperature increase of more than 0.4 Kelvin is predicted for the future. Without CO2, the temperature of the Earth would be 4 K colder.
Biography

Tino Redemann belongs to the Institute of Fluid Dynamics and Thermodynamics at the Otto-von-Guericke-University Magdeburg and to the Institute for Energy Process Engineering and Fuel Technology at the Clausthal University of Technology in Germany and conduct research in the field of heat radiation in industrial kilns.

Top