alexa Filed Demonstration Of A Portable TS-af-HFM Nanofiltration Process For The Cost-effective Treatment Of Oilfield Produced Water
ISSN: 2469-9764

Industrial Chemistry
Open Access

Like us on:
OMICS International organises 3000+ Global Conferenceseries Events every year across USA, Europe & Asia with support from 1000 more scientific Societies and Publishes 700+ Open Access Journals which contains over 50000 eminent personalities, reputed scientists as editorial board members.

Open Access Journals gaining more Readers and Citations

700 Journals and 15,000,000 Readers Each Journal is getting 25,000+ Readers

This Readership is 10 times more when compared to other Subscription Journals (Source: Google Analytics)

Share This Page

Additional Info

Loading Please wait..

2nd World Conference on Industrial Chemistry and Water Treatment
May 22-23, 2017 Las Vegas, USA

Jianjia Yu, Shangwen Zha and Guoyin Zhang
New Mexico Tech, USA
ScientificTracks Abstracts: Ind Chem
DOI: 10.4172/2469-9764-C1-005
Statement of the Problem: Flowback and/or produced water (P/F water) is the largest byproduct stream associated with oil and gas production. The P/F water contains elevated concentrations of dissolved salt (20,000 to 300,000 ppm), suspended solids, soluble organics and low concentration of BTEX. Management of F/P water is a particular concern due to the wide range of constituents which are of concern to both unconventional shale gas developers and the environment. The overall objective of this project is to develop and demonstrate the performance and cost-effectiveness of a portable Two-Stage, Antifouling Hollow Fiber Membrane (TS-af-HFM) nanofiltration process to convert produced water into a clean water product for a reused fluid or direct discharge. Methodology & Theoretical Orientation: Large amounts of super hydrophobic PVDF/Si-R hollow fiber membranes and super hydrophilic PES/SiO2 hollow fiber membranes were fabricated to assemble the pilot-scale hollow fiber membrane modules for the installation of the TS-af-HFM nanofiltration system. The nanofiltration system was installed and tested in a production facility located at Carlsbad, New Mexico. Conclusion & Significance: It was found that the permeate water flux and water recovery was proportional to the feed rate. The optimal feed rate for a single hollow fiber membrane module was in the range between 10.96-12.95 bbl/day, with the water recovery around 60%. The performance of the nanofiltration system was not influenced by the temperature. The TS-af-HFM system exhibited good antifouling ability during a continuous filtration process. A comprehensive cost analysis reveals that the TS-af-HFM system can help generate $61,468 of capitals compared to without the system.

Jianjia Yu is a Research Scientist at Petroleum Recovery Research Center of the New Mexico Institute of Mining and Technology (NMIMT). His research interests include CO2 foam EOR, CO2 capture and produced water remediation. He has authored/or coauthored more than 35 technical papers and holds 1 US patent. He holds a PhD degree in Petroleum Engineering from NMIMT.

Email: [email protected]

image PDF   |   image HTML

Relevant Topics

Peer Reviewed Journals
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version