Dersleri yüzünden oldukça stresli bir ruh haline sikiş hikayeleri bürünüp özel matematik dersinden önce rahatlayabilmek için amatör pornolar kendisini yatak odasına kapatan genç adam telefonundan porno resimleri açtığı porno filmini keyifle seyir ederek yatağını mobil porno okşar ruh dinlendirici olduğunu iddia ettikleri özel sex resim bir masaj salonunda çalışan genç masör hem sağlık hem de huzur sikiş için gelip masaj yaptıracak olan kadını gördüğünde porn nutku tutulur tüm gün boyu seksi lezbiyenleri sikiş dikizleyerek onları en savunmasız anlarında fotoğraflayan azılı erkek lavaboya geçerek fotoğraflara bakıp koca yarağını keyifle okşamaya başlar

GET THE APP

LIGNINOLYTIC FUNGI: THEIR DEGRADATIVE POTENTIAL AND THE PROSPECT FOR THE DEVELOPMENT OF ENVIRONMENTALLY SIGNIFICANT BIOTECHNOLOGIES | 71793

Our Group organises 3000+ Global Conferenceseries Events every year across USA, Europe & Asia with support from 1000 more scientific Societies and Publishes 700+ Open Access Journals which contains over 50000 eminent personalities, reputed scientists as editorial board members.

Open Access Journals gaining more Readers and Citations
700 Journals and 15,000,000 Readers Each Journal is getting 25,000+ Readers

This Readership is 10 times more when compared to other Subscription Journals (Source: Google Analytics)
Google Scholar citation report
Indexed In
  • Index Copernicus
  • Google Scholar
  • Open J Gate
  • Academic Keys
  • China National Knowledge Infrastructure (CNKI)
  • RefSeek
  • Hamdard University
  • EBSCO A-Z
  • OCLC- WorldCat
  • Publons
  • Geneva Foundation for Medical Education and Research
  • Euro Pub
  • Geneva Foundation for Medical Education and Research
  • ICMJE
Share This Page

LIGNINOLYTIC FUNGI: THEIR DEGRADATIVE POTENTIAL AND THE PROSPECT FOR THE DEVELOPMENT OF ENVIRONMENTALLY SIGNIFICANT BIOTECHNOLOGIES

2nd International Conference on Environmental Health & Global Climate Change

Natalia Pozdnyakova

Russian Academy of Sciences, Russia

Keynote: Occup Med Health Aff

DOI: 10.4172/2329-6879-C1-030

Abstract
Ligninolytic fungi are taxonomically heterogeneous higher fungi characterized by a unique ability to depolymerizee and mineralize lignin. They include wood-and soil-inhabiting basidiomycetes and some ascomycetes. The extracellular, nonspecific, and oxidative enzymatic system of these fungi catalyses lignin degradation. This system includes lignin peroxidase, Mn-peroxidase, versatile peroxidase, and laccase, allowing the degradation of many persistent aromatic compounds with structures similar to those of the metabolites formed in the biosynthesis or degradation of lignin. Among such compounds are both individual substances [pesticides, polychlorinated biphenyls, halogenated aromatic compounds, nitro- and amino-substituted phenols, trinitrotoluene, synthetic dyes and Polycyclic Aromatic Hydrocarbons (PAHs)] and their complex mixtures. Enzyme synthesis is not repressed when the concentrations of these substances are too low to induce the enzymes. Therefore, the enzymes can degrade even low concentrations of pollutants. The catalytic action of the Ligninolytic enzymes gives rise to polar and water-soluble products, which are more accessible for both fungal metabolism and further degradation by the natural soil micro flora. On the basis of a screening of basidiomycetes and ascomycetes, we selected the most active fungi for their degradative activity toward PAHs, nonionic surfactants, alkyl phenols, synthetic dyes, and oil. These fungi were found to hold promise for further studies and use in biotechnology. Despite some differences, PAH degradation followed the same scheme, first forming quinone metabolites and later forming phthalic acid, which is included in basal metabolism. All the investigated basidiomycetes and the ascomycete Cladosporium herbarum completely decolorized anthraquinone dyes, and both the chromophore part of the molecule and the aromatic ring were available for degradation. The site of attack on oxyethylated alkylphenols (the oxyethyl chain or the aromatic ring) was shown to be determined by the fungal species. The fungi were able to metabolize oil under submerged cultivation and in soil. Pollutant degradation was accompanied by the production of ligninolytic enzymes and of emulsifiers, substances that promote pollutant solubility and affect enzyme catalytic activity. The unique properties of Ligninolytic fungi make them promising for use in bioremediation, particularly if pollutants are difficult to decompose by bacteria.
Biography

Natalia Pozdnyakova is a leading researcher at the Environmental Biotechnology Laboratory of the Institute of Biochemistry and Physiology of Plants and Microorganisms Russian Academy of Sciences. Her Main research area is Enzymology of the fungal degradation of lignin and xenobiotics.

Relevant Topics
Top