ISSN: 2161-0681

Journal of Clinical & Experimental Pathology
Open Access

Our Group organises 3000+ Global Conferenceseries Events every year across USA, Europe & Asia with support from 1000 more scientific Societies and Publishes 700+ Open Access Journals which contains over 50000 eminent personalities, reputed scientists as editorial board members.

Open Access Journals gaining more Readers and Citations
700 Journals and 15,000,000 Readers Each Journal is getting 25,000+ Readers

This Readership is 10 times more when compared to other Subscription Journals (Source: Google Analytics)
Google Scholar citation report
Citations : 1437

Journal of Clinical & Experimental Pathology received 1437 citations as per Google Scholar report

Journal of Clinical & Experimental Pathology peer review process verified at publons
Indexed In
  • Index Copernicus
  • Google Scholar
  • Sherpa Romeo
  • Open J Gate
  • Genamics JournalSeek
  • JournalTOCs
  • Cosmos IF
  • Ulrich's Periodicals Directory
  • RefSeek
  • Directory of Research Journal Indexing (DRJI)
  • Hamdard University
  • EBSCO A-Z
  • OCLC- WorldCat
  • Publons
  • Geneva Foundation for Medical Education and Research
  • Euro Pub
  • ICMJE
  • world cat
  • journal seek genamics
  • j-gate
  • esji (eurasian scientific journal index)
Share This Page

Prenatal screening of maternal immune antigen biomarkers linked to microglial regulation of brain development may predict autism risk

12th International Conference on Pediatric Pathology & Laboratory Medicine

Sarah Adelaide Crawford

Southern Connecticut State University, USA

Keynote: J Clin Exp Pathol

DOI: 10.4172/2161-0681.C1.030

Abstract
Recent discoveries of the connections between the maternal immune system (IS) and prenatal brain development suggest that routine prenatal screening for chronic disorders associated with IS dysfunction may be useful in identifying women at heightened risk for giving birth to a child with autism. Epidemiological studies have shown that the incidence of IS disorders, including systemic lupus erythematosus (SLE), rheumatoid arthritis (RA) and chronic obesity in combination with insulinresistant diabetes has increased significantly over the past several decades and that pregnant women with these conditions are at increased risk for having a child with autism. For this reason, physiological parameters associated with these prenatal conditions that can be detected before onset or at early stages of disease may serve as biomarkers for increased autism risk. A physiological relationship between maternal IS dysfunction and impaired embryonic/fetal brain development may be defined by critical neurodevelopmental functions of brain microglia that are responsive to both neural and immunological stimuli. Impaired regulation of the developmentally versus immunologically defined functions of brain microglia may represent a primary cause of the neurological impairments characteristic of ASD. This critical cause/effect of relationship provides the rationale for autism risk factor assessment using biomarkers associated with chronic immune conditions that impair the neurodevelopmental functions of microglia as a consequence of their inappropriate immunological activation. Moreover, the connection between abnormal IS function and impaired neural development suggests preventive approaches that can be used to decrease the overall risk for ASD in children born to mothers with these conditions.
Biography

Sarah Adelaide Crawford completed her Doctoral degree in Physicians and Surgeons Department of Biochemistry and Biophysics from Columbia University College. She completed her Master’s degree in Biochemistry from the Princeton University. Her Post-doctoral research was carried out at Memorial Sloan Kettering Cancer Center in New York. She is a Professor of Genetics at Southern Connecticut State University and Director of Cancer Biology Research Laboratory. Currently, she is working on the causes and prevention of autism. She has developed a new model to explain the causes of autism and its recent dramatic increase. Applications of this model can be used in preventive approaches to screen for autism risk factors to reduce the occurrence of this disorder.

Email: crawfordsa321@aol.com

Top