alexa A Comparative Study On Biodiesel Production From Waste Cooking Oils Obtained From Different Sources Using Supercritical Methanol
ISSN: 2155-6199

Journal of Bioremediation & Biodegradation
Open Access

Like us on:
OMICS International organises 3000+ Global Conferenceseries Events every year across USA, Europe & Asia with support from 1000 more scientific Societies and Publishes 700+ Open Access Journals which contains over 50000 eminent personalities, reputed scientists as editorial board members.

Open Access Journals gaining more Readers and Citations

700 Journals and 15,000,000 Readers Each Journal is getting 25,000+ Readers

This Readership is 10 times more when compared to other Subscription Journals (Source: Google Analytics)

Share This Page

Additional Info

Loading
Loading Please wait..
 

6th World Congress on Biofuels and Bioenergy
September 05-06, 2017 | London, UK

Omar Aboelazayem, Mamdouh Gadalla and Basudeb Saha
The British University in Egypt, Egypt
London South Bank University, UK
ScientificTracks Abstracts: J Bioremediat Biodegrad
DOI: 10.4172/2155-6199-C1-008
Abstract
Biodiesel has been considered as a reasonable replacement fuel for petroleum diesel. It has many advantages over petroleum diesel including its biodegradability and non-toxicity. In addition, it provides free aromatics and sulphur combustion and it is a greener fuel with lower carbon monoxide and hydrocarbons emissions. However, biodiesel has lower heating value and it is relatively more expensive than petroleum diesel. In an attempt to reduce the cost of biodiesel, waste cooking oil (WCO) has been considered as a competitive feedstock. It also provides more sustainability for the produced biodiesel as it is a result of transformation of waste to greener source of energy. The main concern for using WCO as a feedstock for biodiesel production is the presence of high concentration of free fatty acids (FFA), which result in saponification reaction while using the conventional alkaline catalysed process. Saponification lowers the biodiesel yield by preventing the separation of biodiesel from the product. In this study, a non-catalytic method for biodiesel production from WCO using supercritical methanol has been investigated. Two different feedstocks with different FFA concentration have been examined. Response surface methodology (RSM) using Box Behnken Design (BBD) and Central Composite Design (CCD) has been employed to analyse the effect of different reaction variables including methanol to oil (M:O) molar ratio, temperature, pressure and time on biodiesel yield. Numerical optimization has been applied to determine the optimum conditions for maximum production of biodiesel for each feedstock. It has been concluded that the feedstock with higher FFA concentration produce higher biodiesel yield within the same reaction conditions. This result indicates the significance of using supercritical methanol technique for feedstocks with high FFA concentration as it enhances both esterification of FFA and transesterification of triglycerides (TG) to fatty acids methyl esters (FAME).
Biography

Omar Aboelazayem is a Teaching Assistant in the Chemical Engineering Department of The British University in Egypt (BUE) (2013-present). He received Bachelor of Science (Honours) (BSc) with Distinction from the BUE in Chemical Engineering (2013). He also earned a validated Bachelor of Engineering Honours degree (BEng) with Distinction in Chemical Engineering (2013) from London South Bank University (LSBU). He has enrolled in LSBU as a PhD student in February 2015. His research is focused on sustainable production of biodiesel from renewable sources. He has published more than 5 research papers from his Doctoral work.

image PDF   |   image HTML
 

Relevant Topics

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

Agri, Food, Aqua and Veterinary Science Journals

Dr. Krish

[email protected]

1-702-714-7001 Extn: 9040

Clinical and Biochemistry Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Business & Management Journals

Ronald

[email protected]

1-702-714-7001Extn: 9042

Chemical Engineering and Chemistry Journals

Gabriel Shaw

[email protected]

1-702-714-7001 Extn: 9040

Earth & Environmental Sciences

Katie Wilson

[email protected]

1-702-714-7001Extn: 9042

Engineering Journals

James Franklin

[email protected]

1-702-714-7001Extn: 9042

General Science and Health care Journals

Andrea Jason

[email protected]

1-702-714-7001Extn: 9043

Genetics and Molecular Biology Journals

Anna Melissa

[email protected]

1-702-714-7001 Extn: 9006

Immunology & Microbiology Journals

David Gorantl

[email protected]

1-702-714-7001Extn: 9014

Informatics Journals

Stephanie Skinner

[email protected]

1-702-714-7001Extn: 9039

Material Sciences Journals

Rachle Green

[email protected]

1-702-714-7001Extn: 9039

Mathematics and Physics Journals

Jim Willison

[email protected]

1-702-714-7001 Extn: 9042

Medical Journals

Nimmi Anna

[email protected]

1-702-714-7001 Extn: 9038

Neuroscience & Psychology Journals

Nathan T

[email protected]

1-702-714-7001Extn: 9041

Pharmaceutical Sciences Journals

John Behannon

[email protected]

1-702-714-7001Extn: 9007

Social & Political Science Journals

Steve Harry

[email protected]

1-702-714-7001 Extn: 9042

 
© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords