alexa Biomethane, Variables And Wastes Conversion: Optimal Process Conditions For Enhanced Biomethanation Of Animal And Fruit Wastes | 72758
ISSN: 2155-6199

Journal of Bioremediation & Biodegradation
Open Access

Like us on:
OMICS International organises 3000+ Global Conferenceseries Events every year across USA, Europe & Asia with support from 1000 more scientific Societies and Publishes 700+ Open Access Journals which contains over 50000 eminent personalities, reputed scientists as editorial board members.

Open Access Journals gaining more Readers and Citations

700 Journals and 15,000,000 Readers Each Journal is getting 25,000+ Readers

This Readership is 10 times more when compared to other Subscription Journals (Source: Google Analytics)

6th World Congress on Biofuels and Bioenergy

Oluwafunmilayo O Aworanti
Lautech, Nigeria
Posters & Accepted Abstracts: J Bioremediat Biodegrad
DOI: 10.4172/2155-6199-C1-009
Abstract
Biomethanation of animal and fruit wastes is an environmental benign and cheap source of energy. However, biomethanation has the problem of large hydraulic retention time and low gas production which has led to its underutilization. Therefore, research is focused on biomethanation enhancement for efficient and high yield biomethane production. Laboratory scale batch anaerobic digester was used to investigate the effects of operating variables [Total Solid Content (TSC), Temperature (TEMP), Agitation (AGT) and Feed/Inoculum Ratio (FIR)] on biomethane generation from mixture of animal wastes (cattle dung, pig dung and poultry droppings), co-substrates (orange, mango and pineapple wastes) and (chicken rumen). 5 different slurries [Animal and Orange wastes with Inoculum (AOI); Animal and Mango wastes with Inoculum (AMI); Animal and Pineapple wastes with Inoculum (API); Animal and the three fruits wastes with Inoculum (AOMPI) and Animal wastes (A)] were charged into the digester. The process were carried out for 70 days at these conditions TSC (2- 10%), TEMP (25 -60ºC), AGT (35- 70 rpm) and FIR (1:1, 1:2, 1:3, 2:1 and 3:1). Biomethane produced was collected continuously into a gas bag and analysed using Gas Chromatography. One-Factor-at-A-Time was used to select TEMP, TSC and FIR for Central Composite Design of experiment to obtain optimal conditions that maximise the yield of biogas (Y1), biomethane content (Y2) and minimise the hydraulic retention time (Y3). Kinetic parameters of the process were estimated. Maximum yield (%) were obtained in API having the range 43.5 - 65.5; 65.5 - 69.5 and 50.1- 66.8 for TSC, FIR and TEMP, respectively. Maximum of 7.2 kg (Y1), 71.54 % (Y2) and 8 days (Y3) were obtained at optimum conditions TEMP (55.2ºC), TSC (6.25 %) and FIR (1:2). MG model best fitted the experimental data. Use of pineapple waste as a co-substrate is more productive in biomethanation. Operating variables enhanced biomethanation.
image PDF   |   image HTML
 

Relevant Topics

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2018-19
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

Agri & Aquaculture Journals

Dr. Krish

[email protected]

1-702-714-7001Extn: 9040

Biochemistry Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Business & Management Journals

Ronald

[email protected]

1-702-714-7001Extn: 9042

Chemistry Journals

Gabriel Shaw

[email protected]

1-702-714-7001Extn: 9040

Clinical Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Engineering Journals

James Franklin

[email protected]

1-702-714-7001Extn: 9042

Food & Nutrition Journals

Katie Wilson

[email protected]

1-702-714-7001Extn: 9042

General Science

Andrea Jason

[email protected]

1-702-714-7001Extn: 9043

Genetics & Molecular Biology Journals

Anna Melissa

[email protected]

1-702-714-7001Extn: 9006

Immunology & Microbiology Journals

David Gorantl

[email protected]

1-702-714-7001Extn: 9014

Materials Science Journals

Rachle Green

[email protected]

1-702-714-7001Extn: 9039

Nursing & Health Care Journals

Stephanie Skinner

[email protected]

1-702-714-7001Extn: 9039

Medical Journals

Nimmi Anna

[email protected]

1-702-714-7001Extn: 9038

Neuroscience & Psychology Journals

Nathan T

[email protected]

1-702-714-7001Extn: 9041

Pharmaceutical Sciences Journals

Ann Jose

[email protected]

1-702-714-7001Extn: 9007

Social & Political Science Journals

Steve Harry

[email protected]

1-702-714-7001Extn: 9042

 
© 2008- 2018 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version