alexa Use Of 4-dodecylbenzenesulfonic Acid Catalyst On The Methanolysis Of The Rapeseed Oil In Meso-integral Baffled Reactor | 72739
ISSN: 2155-6199

Journal of Bioremediation & Biodegradation
Open Access

Like us on:
OMICS International organises 3000+ Global Conferenceseries Events every year across USA, Europe & Asia with support from 1000 more scientific Societies and Publishes 700+ Open Access Journals which contains over 50000 eminent personalities, reputed scientists as editorial board members.

Open Access Journals gaining more Readers and Citations

700 Journals and 15,000,000 Readers Each Journal is getting 25,000+ Readers

This Readership is 10 times more when compared to other Subscription Journals (Source: Google Analytics)

6th World Congress on Biofuels and Bioenergy
September 05-06, 2017 | London, UK

Luma Sh. Al-Saadi, Alexandra Alegría, Valentine Eze and Adam P Harvey
Newcastle University / Chemical engineering and advanced materials, UK
ScientificTracks Abstracts: J Bioremediat Biodegrad
DOI: 10.4172/2155-6199-C1-008
Abstract
This study investigates the use of 4-dodecylbenzenesulphonic acid (DBSA) as a catalyst for fatty acid methyl ester (FAME) production from rapeseed oil, using a mesoscale oscillatory baffled reactor (“meso-OBR”) as a screening platform. The effects of oscillatory mixing intensity, methanol-to-oil molar ratio, catalyst to oil molar ratio and residence time on the conversion to FAME were evaluated. The reaction conditions were optimised using the Design of Experiments (DoE) methodology. A Box- Behnken design with one block, three variables (methanol to oil molar ratio, catalyst to oil molar ratio and residence time) and three replicates of the central point was used. A response surface model was able to predict the FAME conversion over a broad range of operating conditions. ANOVA analysis revealed that the catalyst to oil molar ratio and residence time were more significant than the methanol to oil molar ratio. 100% conversion of rapeseed oil to FAME was achieved under mild reaction conditions 6.5:1 methanol to oil molar ratio, 0.48:1 of catalyst to oil molar ratio and 120min. The DBSA catalyst allowed operation at a significantly lower molar ratio than in conventional acid catalysis: below 7:1, as opposed to the 9:1 typically used with sulphuric acid. Furthermore, the degree of agitation required was greatly reduced, due to its behaviour as a surfactant. Only 180 min was required to accomplish the reaction compared with 19hr that for sulphuric acid. Finally, very little DBSA catalyst was required (0.18wt %), compared to sulphuric acid (0.5 wt. %), under the reaction conditions investigated here. The significant reductions in excess methanol and degree of agitation would significantly reduce operating costs, and the substantial reduction in reaction time would significantly reduce reactor size, and therefore capital cost.
image PDF   |   image HTML
 

Relevant Topics

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2018-19
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

Agri & Aquaculture Journals

Dr. Krish

[email protected]

1-702-714-7001Extn: 9040

Biochemistry Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Business & Management Journals

Ronald

[email protected]

1-702-714-7001Extn: 9042

Chemistry Journals

Gabriel Shaw

[email protected]

1-702-714-7001Extn: 9040

Clinical Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Engineering Journals

James Franklin

[email protected]

1-702-714-7001Extn: 9042

Food & Nutrition Journals

Katie Wilson

[email protected]

1-702-714-7001Extn: 9042

General Science

Andrea Jason

[email protected]

1-702-714-7001Extn: 9043

Genetics & Molecular Biology Journals

Anna Melissa

[email protected]

1-702-714-7001Extn: 9006

Immunology & Microbiology Journals

David Gorantl

[email protected]

1-702-714-7001Extn: 9014

Materials Science Journals

Rachle Green

[email protected]

1-702-714-7001Extn: 9039

Nursing & Health Care Journals

Stephanie Skinner

[email protected]

1-702-714-7001Extn: 9039

Medical Journals

Nimmi Anna

[email protected]

1-702-714-7001Extn: 9038

Neuroscience & Psychology Journals

Nathan T

[email protected]

1-702-714-7001Extn: 9041

Pharmaceutical Sciences Journals

Ann Jose

[email protected]

1-702-714-7001Extn: 9007

Social & Political Science Journals

Steve Harry

[email protected]

1-702-714-7001Extn: 9042

 
© 2008- 2018 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version