alexa Hemodynamic Shear Stress Stimulates Migration And Extravasation Of Tumor Cells By Elevating Cellular Oxidative Stress
ISSN: 2572-4118

Breast Cancer: Current Research
Open Access

OMICS International organises 3000+ Global Conferenceseries Events every year across USA, Europe & Asia with support from 1000 more scientific Societies and Publishes 700+ Open Access Journals which contains over 50000 eminent personalities, reputed scientists as editorial board members.

Open Access Journals gaining more Readers and Citations

700 Journals and 15,000,000 Readers Each Journal is getting 25,000+ Readers

This Readership is 10 times more when compared to other Subscription Journals (Source: Google Analytics)

Share This Page

Additional Info

Loading Please wait..

4th World Congress on Breast Cancer
May 08-10, 2017 Singapore

Shijun Ma, Kathy Qian Luo
Nanyang Technological University, Singapore
University of Macau, China
ScientificTracks Abstracts: Breast Can Curr Res
DOI: 10.4172/2572-4118-C1-002
Circulation of cancer cells in blood flow is an important phase for distant cancer metastasis, during which cancer cells are exposed to hemodynamic shear stress. Recent studies identified shear stress as the primary factor that damages circulating tumor cells in blood flow. However, it remains unclear whether shear stress can modulate properties and functions of tumor cells in a manner that might help tumor cells to exit circulation. In our study, we demonstrate that fluidic shear stress could positively regulate migration and extravasation of surviving tumor cells in circulation, and facilitate metastasis. We established a microfluidic circulatory system to apply physiological fluidic shear stress on breast cancer cells and mimic the physical environment in blood flow. An arterial level of shear stress generated in the circulatory system significantly increased tumor cell migration in both transwell and wound healing assays. We also observed that shear stress enhanced extravasation of breast tumor cells in a transendothelial assay. The mechanistic study identified the elevation of cellular ROS as an early molecular event induced by shear stress. The excessive cellular ROS subsequently activates ERK1/2 pathway, which leads to tumor cell migration and extravasation. Finally, by using a zebrafish model, we demonstrated that application of antioxidants could suppress shear stress-enhanced tumor cell extravasation in vivo. This new understanding of how fluidic shear stress promotes metastatic potential of tumor cells has important implications in cancer treatment and can help us identify latent therapeutic targets for inhibiting tumor progression.

Ma Shijun received his BS from Wuhan University in China. He is currently a PhD candidate in School of Chemical and Biomedical Engineering, Nanyang Technological University. His current research work focuses on the how hemodynamic shear stress influences tumor cell migration and adhesion.

Email: [email protected]

image PDF   |   image HTML

Relevant Topics

Peer Reviewed Journals
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version