alexa
Reach Us +44-1764-910199
Ocean Acidification And Solar Radiation Interacts To Influence Marine Primary Producers | 9496
ISSN: 2155-9910

Journal of Marine Science: Research & Development
Open Access

Like us on:

OMICS International organises 3000+ Global Conferenceseries Events every year across USA, Europe & Asia with support from 1000 more scientific Societies and Publishes 700+ Open Access Journals which contains over 50000 eminent personalities, reputed scientists as editorial board members.

Open Access Journals gaining more Readers and Citations
700 Journals and 15,000,000 Readers Each Journal is getting 25,000+ Readers

This Readership is 10 times more when compared to other Subscription Journals (Source: Google Analytics)
All submissions of the EM system will be redirected to Online Manuscript Submission System. Authors are requested to submit articles directly to Online Manuscript Submission System of respective journal.

Ocean acidification and solar radiation interacts to influence marine primary producers

International Conference on Oceanography & Natural Disasters

Kunshan Gao

Accepted Abstracts: J Marine Sci Res Dev

DOI: 10.4172/2155-9910.S1.004

Abstract
Carbon dioxide and light are two major prerequisites of photosynthesis. Rising CO2 levels in oceanic surface waters in combination with ample light supply are therefore often considered stimulatory to marine primary production. Here we show that the combination of an increase in both CO2 and light exposure negatively impacts photosynthesis and growth of marine primary producers. When exposed to CO2 concentrations projected for the end of this century, natural phytoplankton assemblages of the South China Sea responded with decreased primary production and increased light stress at light intensities representative of the upper surface layer. The phytoplankton community shifted away from diatoms, the dominant phytoplankton group during our field campaigns. To examine the underlying mechanisms of the observed responses, we grew diatoms at different CO2 concentrations and under varying levels (5-100%) of solar radiation experienced by the phytoplankton at different depths of the euphotic zone. Above 22-36% of incident surface irradiance, growth rates in the high-CO2-grown cells were inversely related to light levels and exhibited reduced thresholds at which light becomes inhibitory. Future shoaling of upper-mixed-layer depths will expose phytoplankton to increased mean light intensities. In combination with rising CO2 levels, this may cause a widespread decline in marine primary production and a community shift away from diatoms, the main algal group that supports higher trophic levels and carbon export in the ocean.
Biography
Kunshan Gao has completed his Ph.D. at the age of 31 years from Kyoto University and postdoctoral studies from University of Hawaii. He is the Chair professor of State key Laboratory of Marine Environmental Science (Xiamen University). He has published more than 170 papers in reputed journals and serving as editorial board members of Journal of applied Phycolology, Algae and American J. of Plant Sciences.
Top