alexa
Reach Us +44-1477412632
Quantifying Future Changes In Extreme Precipitation Events Based On Resolved Synoptic Atmospheric Patterns | 9432
ISSN: 2155-9910

Journal of Marine Science: Research & Development
Open Access

Like us on:

OMICS International organises 3000+ Global Conferenceseries Events every year across USA, Europe & Asia with support from 1000 more scientific Societies and Publishes 700+ Open Access Journals which contains over 50000 eminent personalities, reputed scientists as editorial board members.

Open Access Journals gaining more Readers and Citations
700 Journals and 15,000,000 Readers Each Journal is getting 25,000+ Readers

This Readership is 10 times more when compared to other Subscription Journals (Source: Google Analytics)

International Conference on Oceanography & Natural Disasters

Xiang Gao
ScientificTracks Abstracts: J Marine Sci Res Dev
DOI: 10.4172/2155-9910.S1.002
Abstract
Global warming is expected to increase the frequency and intensity of extreme precipitation events. However, climate models remain inconsistent in capturing precipitation changes, especially at the regional scale. In this study, an analogue method is developed to detect the occurrence of extreme precipitation events without relying on the uncertain modeled precipitation. Our approach is based on the use of composite maps to identify the distinct large-scale atmospheric conditions that lead to extreme precipitation events at local scales. The development of composite maps, exemplified in the south-central United States, is achieved through the joint analysis of 27-yr (1979-2005) CPC gridded station data and NASA?s Modern Era Retrospective-analysis for Research and Applications (MERRA). Various circulation features and moisture plumes associated with extreme precipitation events are examined. The scheme is evaluated for the multiple climate model simulations of the 20 th century from Coupled Model Intercomparison Project Phase 5 (CMIP5) archive to determine whether the statistical nature of modeled precipitation events (i.e. the numbers of occurrences over each season) could well correspond to that of the observed. Further, the approach is applied to the CMIP5 multi-model projections of various climate change scenarios (i.e. Representative Concentration Pathways (RCP) scenarios) in the next century to assess the potential changes in the probability of extreme precipitation events. The presented analyses will highlight the complementary/comparative nature of these results to previous studies that have considered modeled precipitation output to assess extreme-event trends. The results could provide useful insights in helping society develop adaptive strategies and prevent catastrophic losses.
Biography
Xiang Gao has completed her Ph.D. in 2001 from the University of Arizona and Postdoctoral studies from Center for Ocean-Land-Atmosphere (COLA) Studies. She is currently a research scientist at MIT Joint Program on the Science and Policy of Global Change. She has been actively involved in the research projects of NASA EOS Moderate Resolution Imaging Spectroradiometer (MODIS), NASA Energy and Water Cycle Study (NEWS), and Global Soil Wetness Project Phase 2 (GSWP-2). She is also a member of the Permafrost Carbon Research Coordination Network Working Group.
image PDF   |   image HTML
 
Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2018-19
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

Agri and Aquaculture Journals

Dr. Krish

[email protected]

+1-702-714-7001Extn: 9040

Biochemistry Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Business & Management Journals

Ronald

[email protected]

1-702-714-7001Extn: 9042

Chemistry Journals

Gabriel Shaw

[email protected]

1-702-714-7001Extn: 9040

Clinical Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Engineering Journals

James Franklin

[email protected]

1-702-714-7001Extn: 9042

Food & Nutrition Journals

Katie Wilson

[email protected]

1-702-714-7001Extn: 9042

General Science

Andrea Jason

[email protected]

1-702-714-7001Extn: 9043

Genetics & Molecular Biology Journals

Anna Melissa

[email protected]

1-702-714-7001Extn: 9006

Immunology & Microbiology Journals

David Gorantl

[email protected]

1-702-714-7001Extn: 9014

Materials Science Journals

Rachle Green

[email protected]

1-702-714-7001Extn: 9039

Nursing & Health Care Journals

Stephanie Skinner

[email protected]

1-702-714-7001Extn: 9039

Medical Journals

Nimmi Anna

[email protected]

1-702-714-7001Extn: 9038

Neuroscience & Psychology Journals

Nathan T

[email protected]

1-702-714-7001Extn: 9041

Pharmaceutical Sciences Journals

Ann Jose

[email protected]

1-702-714-7001Extn: 9007

Social & Political Science Journals

Steve Harry

streamtajm

[email protected]

1-702-714-7001Extn: 9042

 
© 2008- 2018 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version