alexa A Study On The Antimicrobial Activity Of New Substitute
E- ISSN: 2320 - 3528
P- ISSN: 2347 - 2286

Research & Reviews: Journal of Microbiology and Biotechnology
Open Access

Like us on:
OMICS International organises 3000+ Global Conferenceseries Events every year across USA, Europe & Asia with support from 1000 more scientific Societies and Publishes 700+ Open Access Journals which contains over 50000 eminent personalities, reputed scientists as editorial board members.

Open Access Journals gaining more Readers and Citations

700 Journals and 15,000,000 Readers Each Journal is getting 25,000+ Readers

This Readership is 10 times more when compared to other Subscription Journals (Source: Google Analytics)

Research Article

A Study On The Antimicrobial Activity Of New Substituted 1,3,4-Oxadiazole Analogues

Jayaroopa Prabhashankar1, Ajay Kumar Kariyappa1*, Deepa Nagaraju2 and Raghavendra Maddur Puttaswamy2
  1. Post Graduate Department of Chemistry, Yuvaraja’s College, University of Mysore, Mysore, Karnataka, India
  2. Post Graduate Department of Microbiology, Maharani’s Science College for Women, JLB Road, Mysore, Karnataka,India
Corresponding Author: Post Graduate Department of Chemistry, Yuvaraja’s College, University of Mysore, Mysore, Karnataka, India. Mobile: +91 9972829045
Received: 06/06/2013 Accepted: 18/06/2013
Related article at Pubmed, Scholar Google


Substituted 1,3,4-oxadiazole derivatives such as 2-(chloromethyl)-5-heptadecyl-1,3,4-oxadiazole (4a), 2-benzyl-5-heptadecyl-1,3,4-oxadiazole (4b), 2-heptadecyl-5-phenyl-1,3,4-oxadiazole (4c), 2-heptadecyl-5-styryl-1,3,4-oxadiazole (4d), 2-(5-heptadecyl-1,3,4-oxadiazol-2-yl)phenol (4e), 2-heptadecyl-5-o-tolyl-1,3,4-oxadiazole (4f), 2-heptadecyl-5-(4-nitrophenyl)-1,3,4-oxadiazole (4g) and 4-(5-heptadecyl-1,3,4-oxadiazol-2-yl)benzenamine (4h) were subjected to antibacterial and antifungal activity assay by cup diffusion and poisoned food technique against Escherichia coli, Staphylococcus aureus and three strains of seed borne toxigenic Fusarium verticilloides isolated from maize (Zea mays L.) and paddy (Oryza sativa L.). F. verticilloides was confirmed by species specific primers VERT 1 and VERT 2 and fumonisin producing ability was confirmed by VERTF-1 and VERTF-2 using polymerase chain reaction. All the compounds were tested at different concentration (25 to 100 ppm). The results revealed that all eight oxadiazoles completely inhibited all the strains of toxigenic F. verticilloides at 100 ppm indicating Minimal Inhibitory Concentration (MIC). 4b recorded highly significant antibacterial activity against E. coli where as it was 4f against Staph. aureus. The study is successful in reporting the antimicrobial activity of the oxadiazoles and its possible application in management of seed borne fumonisin producing fungi and also bacterial infection in human.


Share This Page

Additional Info

Loading Please wait..
Peer Reviewed Journals
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version